当前位置:首页 期刊杂志

数控机床误差补偿关键技术及其应用研究

时间:2024-07-28

马榕苓

(国能神东煤炭集团有限责任公司 设备维修中心,鄂尔多斯 017200)

滚珠丝杆螺距误差会影响机床的定位加工精度,因此需通过数控系统参数的设置或修改进行误差补偿[1]。文章根据误差的变化特性,将数控机床误差补偿分为静态误差补偿和动态误差补偿两大类,分别举例说明各类误差的来源和形式,旨在提高数控机床的加工精度和加工效率。

1 数控机床误差补偿原理

为提高数控机床精度,需补偿误差,如螺距误差,即滚珠丝杆移动距离与理论值的偏差,该值随位置变化而变化。因此,需利用高精度测量系统比较指令位置与实际位置的偏差,计算每个目标位置点的螺距误差值,并存储在数控系统中。目标轴运动时,数控系统根据指令位置和螺距误差值自动调整输出脉冲数,使移动距离与理论值相符。螺栓位置偏差如图1 所示。

图1 位置偏差

图1中,Pi表示目标点,Pi↑表示正向趋近目标点的实际位置,Pi↓表示负向趋近目标点的实际位置。由于存在反向间隙和螺距误差等因素,Pi↑与Pi↓不重合,即存在双向定位误差。

目标点的正向螺距误差值为

目标点的反向螺距误差值为

目标点的正向位置偏差均值为

目标点的反向位置偏差均值为

式中:k为各目标点的正向、反向螺距测量次数。

基于式(1)和式(2)计算螺距误差值,根据多次测量后的数据运用式(3)和式(4)求得偏差均值,将二者的平均值作为螺距误差值y-i。将数据输入数控系统,作为螺距误差补偿表。数控系统根据指令位置、补偿表中对应的螺距误差值自动调整输出脉冲数,从而实现螺距误差补偿[2]。

2 数控机床误差补偿关键技术

2.1 误差补偿基本要素

螺距误差补偿的实现需要考虑以下几个基本要素。补偿目标轴:需补偿的机床运动轴,如X 轴、Y 轴或Z 轴。补偿范围区间:有效补偿区域,即在此区域内修正误差,通常以机床坐标系最大行程为限[3]。补偿参考位置点:作为补偿起始点,即从此点开始修正误差,通常设为机床坐标系原点。补偿目标点间距:在补偿范围区间内,相邻两个修正点之间的理论距离,通常设为等间距,便于插值或预测。补偿倍率:根据数控系统指令单位调整误差修正值的倍数,通常设为1,也可设为其他倍数,范围为1 ~100。

2.2 误差补偿参数结构体设置

螺距误差补偿的实现需要定义和配置螺距误差补偿参数结构体,以便有效存储和传递误差补偿数据。螺距误差补偿参数结构体主要包括两种,即配置参数结构体和补偿表结构体。

配置参数结构体的代码为

这两种参数结构体分别用于存储、传递螺距误差补偿的相关参数数据,确定误差修正点的数量、位置以及误差修正值的计算输出方式。

2.3 误差补偿流程

螺距误差补偿是一种通过数控系统修正滚珠丝杆的实际移动距离,以提高数控机床定位精度的技术,误差补偿流程如下。

第一,参数初始化。对螺距误差配置参数和螺距误差补偿表进行初始化,设定补偿目标轴、补偿范围区间、补偿参考位置点、补偿目标点间距和补偿倍率等参数,以及各个目标测量点的误差值或分量[4]。

第二,误差测量。通过激光干涉仪等高精度测量仪器,测量线性移动轴在全行程内的螺距误差,得到螺距误差分布曲线。

第三,误差查表。伺服采样周期内判断是否需要补偿螺距误差,一般以机床坐标系为参照。需补偿时,基于指令输入值X,在螺距误差补偿表中查找相应的误差值或分量,确定指令输入值所处的补偿区间n。

第四,误差插值。根据指令输入值X 和所处的补偿区间n,利用插值算法计算出相应的误差修正值ΔX。插值算法可以采用线性插值、二次插值、三次插值等不同的形式,一般形式为ΔX=aX+b,其中a 和b为插值系数,表达式为

第五,误差输出。根据误差修正值ΔX 和输出倍率BSC_Ratio,计算出最终的输出值ΔX0为ΔXBSC_Ratio,并将其与指令输入值X 进行叠加后输出到进给轴驱动器,从而实现对螺距误差的补偿。

3 数控机床误差补偿实验

3.1 实验方案

本实验旨在验证数控机床螺距误差补偿的有效性和精度提升效果。实验设备包括CCS3.3 运动控制器、数控机床和激光干涉仪等[5]。实验步骤:首先,测量X 轴螺距误差,计算误差值并输入运动控制器;其次,开启或关闭误差补偿功能,加工同一图形;再次,用激光干涉仪检测加工精度;最后,对比两种情况的差异。

3.2 实验结果及分析

3.2.1 未加入补偿时的定位精度测量

关闭螺距误差补偿功能的情况下,测量数控机床X 轴的定位精度,采用双向趋近法,即从正向和反向分别趋近同一目标位置点,记录实际位置数据。选取6 个目标位置点,分别为0 mm、100 mm、200 mm、300 mm、400 mm 及500 mm,重复测量6 次,得到如表1 所示数据。

表1 未加入补偿时的螺距误差

从表1 可以看出,未加入补偿的情况下,数控机床的X 轴存在较大螺距误差,且随着目标位置点的增大,螺距误差也呈现增大的趋势。双向定位误差最大达到0.40 mm,单向定位误差最大达到-0.20 mm,都超出数控机床的允许范围,严重影响数控机床的定位精度。因此,有必要对数控机床进行螺距误差补偿,以提高其定位精度。

3.2.2 加入补偿后的定位精度测量

在开启螺距误差补偿功能的情况下对数控机床的X 轴进行定位精度测量,采用同样的双向趋近法,即从正向和反向分别趋近同一目标位置点,并记录实际位置数据[6]。选取同样的6 个目标位置点,分别为0 mm、100 mm、200 mm、300 mm、400 mm 及500 mm,并重复测量6 次,得到如表2 所示数据。

表2 加入补偿后的螺距误差

从表2 可以看出,加入补偿后的情况下,数控机床X轴的螺距误差大幅度减小,实际移动距离与理论移动距离非常接近。双向定位误差最大只有0.17 mm,单向定位误差最大只有-0.08 mm,都在数控机床的允许范围内,显著提高了数控机床的定位精度。因此,数控机床螺距误差补偿功能具有一定的有效性和可靠性,能够显著提高数控机床的加工精度。

3.2.3 结果分析

为评价数控机床螺距误差补偿功能对X轴定位精度的影响,选取双向定位精度、单向定位精度、重复定位精度、直线度和平行度等检验项目,给出加入补偿前后的定位误差测量结果,并与国标允差值比较,如表3 所示。

表3 加入补偿前后X 轴定位误差变化

从表3 可以看出,加入补偿后,X轴的各项检验指标均得到显著改善。双向定位精度误差、单向定位精度误差分别降低了57.5%和60.0%,双向重复定位精度误差降低50%,单向重复定位精度误差降低96.7%,说明数控机床螺距误差补偿功能可以有效地消除或减小X轴在加工过程中产生的误差,提高X轴的定位精度及运动质量。

4 结语

数控机床误差补偿通过数控系统参数设置达到减小误差的目的,从而提高加工精度。通过对比实验可知,加入补偿后,X轴的各项检验指标都得到显著改善,且满足国标允差值的要求。由此可见,数控机床误差补偿可应用于不同类型规格的数控机床,以提高其加工精度和质量。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!