时间:2024-07-28
吉芳英,颜海波,何 强,赵 艮,牛凤霞 (重庆大学三峡库区生态环境教育部重点实验室,低碳绿色建筑国际联合研究中心,重庆 400045)
龙景湖龙景沟汇水区沉积物-水界面氮形态空间分布特征
吉芳英*,颜海波,何 强,赵 艮,牛凤霞 (重庆大学三峡库区生态环境教育部重点实验室,低碳绿色建筑国际联合研究中心,重庆 400045)
龙景湖是在原有河道基础上闸坝新形成的深水湖泊,为研究龙景沟汇水区沉积物-水界面氮形态的空间分布特征,了解其迁移转化过程,为内源负荷预测分析、内源控制及水质治理提供基础,依据形成历史和水位深度将沉积物分为原河道、新淹没底部和新淹没边坡3个区,分别采集沉积物柱样对沉积物上覆水和间隙水中各形态氮的浓度和表层沉积物泥样总氮的含量进行分析.结果表明,沉积物上覆水和沉积物间隙水的总氮(TN)、氨氮(NH4+-N)、溶解态有机氮(DON)的浓度以及沉积物泥样TN含量的分布趋势与水位深度变化趋势一致,表现为原河道>新淹没底部>新淹没边坡;原河道、新淹没底部、新淹没边坡沉积物间隙水TN的平均浓度分别为33.59,14.62,18.06mg/L, NH4+-N的平均浓度分别为23.01,8.39,13.75mg/L, DON的平均浓度分别为8.57,2.81,5.45mg/L,坡向变化显著且远高于上覆水,释放潜力较大;原河道、新淹没底部沉积物泥样TN含量分别为3789、2984mg/kg,都明显高于新淹没边坡的1270mg/kg.
龙景湖;沉积物-水界面;氮;空间分布
氮是淡水湖泊富营养化的重要限制因子之一,而沉积物作为湖泊水体中氮的重要“源”和“汇”[1-2],在一定条件下沉积物中的氮通过矿化作用,形成可溶性无机氮累积在间隙水[3],通过离子交换、分子扩散及生物扰动等作用,以间隙水为媒介向上覆水扩散迁移,进而影响上覆水水质,改变水体营养状况[4-5].研究表明[6-9],在湖泊外源污染得到有效控制以后,沉积物作为氮源维持水体中高浓度氮营养的效果更加明显,成为水体中氮的主要贡献者,导致湖泊持续富营养化.
目前,国内外对沉积物中氮的研究多集中于浅水湖泊[10-11]和海洋[12-13]沉积物氮的形态研究和垂向分布特征研究,关于深水湖泊和新形成河道型水库沉积物中氮的相关研究[14-15]较少,且较少考虑沉积物形成时间、水位深度对沉积物-水界面各形态氮空间分布的影响.本文以龙景湖龙景沟汇水区作为研究对象,依据沉积物的形成时间和水位深度进行分区,采样研究各区域沉积物及上覆水和间隙水的氮赋存形式及含量水平,以期揭示龙景湖沉积物-水界面氮的空间分布特征,了解其迁移转化过程,为内源负荷预测分析、内源控制及水质治理提供参考.
1.1 研究区域概况
龙景湖位于重庆北部新区园博园内,介于29.680116°N~29.688836°N、106.539547°E~106.555087°E之间,水面总面积约0.67km2,大坝上游常水位标高306m,死水位296m,总库容663万m3,调节库容425万m3,水位深20~30m,换水周期约2.5a,是典型的新建深水位河道型水库.龙景湖是在2011年闸坝形成的深水位河道型水库,赵家溪和龙景沟为2条汇入河流,赵家溪流域面积约15km2,龙景沟流域面积约5km2.龙景湖闸坝拦截蓄水前未进行原河道清淤处理和建设初期施工拦截蓄水的新淹没底部区域的清库工作,龙景湖原河道沉积物有39622m2,新淹没底部沉积物有130640m2,新淹没边坡沉积物有213168m2.随着湖库综合整治,2014年基本切断了龙景湖除面源外的其他外源性污染源.综合整治前,龙景沟是该流域生活污水的受纳水体,年污水汇入量约25.6万m3/a,也是龙景湖外源氮的主要来源.
1.2 采样区块划分
根据沉积物形成时间不同可将沉积物分为原河道沉积物和新淹没沉积物,根据沉积物水位深度可将新淹没沉积物进一步分为新淹没底部沉积物和新淹没边坡沉积物.原河道沉积物是指2009年园博园规划建设前就已经存在的河道,由于龙景湖蓄水前未对原河道进行清淤处理,所以有一定沉积厚度的底泥;新淹没底部沉积物和新淹没边坡沉积物是指(2012年)园博园建成后,湖区蓄水到设计常水位(306m)后较原河道沉积物所增加的区域,其中新淹没底部沉积物是指水位较深的中间沉积物,由于建设初期底部区域未进行清库工作,残留了原始的植被和农地,且底部区域地势平缓,有利于有机质的蓄积,所以沉积物相对较厚,有机质含量相对较高;新淹没边坡沉积物是指水位较浅的边缘区域沉积物,沉积物主要为裸露土壤及碎石表层.
1.3 样品的采集与处理
2014年10月用柱状采样器(Corer 60,Uwitec, Austria)根据沉积物分类结果分区采样,所有采样点采用GPS进行定位导航,共采得27个柱样,采样点位置如图1所示,其中新淹没边坡15个,新淹没底部8个,原河道4个.采得的沉积物柱样现场用橡胶塞进行密封,竖直放置、低温保存、快速运回实验室,静置消除扰动影响,在24h内完成上覆水和间隙水中各形态氮的测定.
用虹吸法取沉积物-水界面上方5cm水样作为沉积物上覆水,取表层2cm沉积物10000r/min离心10min,得到的上清液即为沉积物间隙水,将其和上覆水用0.45μm微孔滤膜过滤,用于测定各形态氮的浓度.离心后的沉积物泥样经冷冻干燥、研磨、过100目筛后保存在封口袋中备用.
1.4 样品的分析方法
图1 沉积物采样点分布Fig.1 Distribution of sediment sampling sites in Longjinghu Lake
2.1 沉积物上覆水中氮形态空间分布特征
图2 沉积物上覆水中各形态氮的空间分布Fig.2 Spatial distribution of nitrogen forms in the overlying water
从图2可以看出,沉积物上覆水中各形态氮的分布差异较大,TN、、DON浓度分别为1.02~7.47,0~5.65,0.44~4.31mg/L,分布趋势相同,表现为原河道和底部区域浓度较高,边坡区域较低,整体上从原河道和底部向边坡逐渐降低,原因在于原河道与底部区域沉积物较厚,有机质含量较高,矿化作用比较明显,且水位较深(9~15m),溶解氧(DO)浓度较低或处于缺氧状态,有利于沉积物中的氮释放到上覆水[18]. DON平均占TN的48%,高低值都出现在相同的区域,为TN的主要存在形式,说明沉积物可能是上覆水DON的主要来源[19],这与太湖沉积物及孔隙水中氮的时空分布特征一致[20].但北部区域DON的浓度与TN浓度相反,原因在于龙景沟汇水区北部呈低凹状,且深度达12m,底部水体基本静止,处于强还原性环境,且外源输入低,导致该区域DON矿化程度大为TN的主要存在形态,且被有效截留,浓度较高[21].浓度为0~1.69mg/L,出现2个峰值区,一个在龙景沟汇水区的西南部,最大值为1.69mg/L,另一个在龙景沟汇水区的东北部,最大值为1.10mg/L,其他区域浓度均低于0.50mg/L,2个峰值区水体表面装有曝气装置,对水体复氧的同时增加了水体的垂直运动,有利于表层富氧水团向底层运动,增加沉积物-水界面DO浓度,增强向的转化,并削弱的削减[22],与波罗的海表层沉积物氮的空间分布[23]和北运河无机氮降解的研究结果[24]一致.
2.2 沉积物间隙水中氮形态空间分布特征
图3 沉积物间隙水中各形态氮的空间分布Fig.3 Spatial distribution of nitrogen forms in the interstitial water
2.3 沉积物泥样TN的空间分布特征
由图4可以看出,沉积物泥样TN的含量为453.58~4393.76mg/kg,分布变化与间隙水DON、TN相似,表现为从原河道和底部区域向边坡区域逐渐降低.但沉积物泥样TN含量的最大值却出现在东北角的边坡区域,可能是由于前期雨季大量营养盐颗粒物和有机碎屑随地表径流经该处的雨、污水管携入沉积于此所致,说明点源对沉积物TN含量影响较大,与内群岛沉积物[30]和梁子湖沉积物[31]中氮分布特征一致.沉积物泥样TN的分布趋势表现为原河道>新淹没底部>新淹没边坡,说明了按照形成时间和水位深度对沉积物进行分区的科学性和必要性.
图4 沉积物泥样TN的空间分布Fig.4 Spatial distribution of total nitrogen in the sediment
2.4 氮在不同介质中的坡向分布特征
龙景沟汇水区原河道和新淹没底部沉积物面积较小,分别为25769,3944m2,仅占龙景沟汇水区沉积物总面积的5.95%和3.84%,但沉积物泥样TN含量都比较高(表1),原河道沉积物泥样TN是新淹没底部的1.27倍,新淹没底部是边坡的2.35倍,原因在于龙景沟汇水区地形呈V型峡谷状,汇入的有机质易往中间汇集,且在蓄水前未对原河道和新淹没底部进行清库工作,因此原河道和底部沉积物有机质含量较高,沉积物泥样TN含量也相应较高.据美国EPA中沉积物 TN污染的评价标准,TN<1000mg/kg时为清洁、1000~2000mg/kg时为轻污染、>2000mg/kg时为重污染[32],龙景沟汇水区原河道和新淹没底部沉积物为重污染水平,新淹没边坡沉积物为轻污染.与国内其它一些深水湖泊沉积物TN含量相比,龙景沟汇水区边坡沉积物泥样TN含量水平较低,与鄱阳湖和邛海沉积物TN含量相当;新淹没底部沉积物TN含量水平稍高,与长寿湖和镜泊湖沉积物TN含量水平相当;原河道沉积物TN含量水平较高,与洱海沉积物TN含量相当.
表1 不同深度沉积物泥样TN含量Table 1 Contents of total nitrogen in the sediments of different depth
表2 不同深度沉积物上覆水和间隙水各形态氮浓度Table 2 Concentrations of nitrogen forms in the overlying water and interstitial water of different depth
沉积物间隙水与沉积物上覆水中各形态氮的质量浓度梯度很大程度上决定着沉积物间隙水中氮素向沉积物上覆水扩散的强度.由表2可知,原河道沉积物间隙水TN、、、DON浓度分别是原河道沉积物上覆水的5.21、3.89、1.65、8.44倍,新淹没底部沉积物间隙水是底部沉积物上覆水的4.29、3.21、1.28、6.64倍,新淹没边坡沉积物间隙水是边坡沉积物上覆水的3.86、8.03、0.51、4.33倍,除了边坡间隙水中浓度低于上覆水外,其他的都高于上覆水,、DON浓度梯度较大,沉积物间隙水中氮素存在向上覆水释放的潜能.沉积物间隙水中TN以DON为主,无机氮以为主,分别约占TN的60%和40%,间隙水中比例较低;新淹没边坡沉积物上覆水DON占TN的57%,其次占27%,新淹没底部和原河道沉积物上覆水均以和DON为主,分别约占TN的50%和40%和DON是沉积物氮素向沉积物上覆水释放的主要形式.
3.2 沉积物泥样TN含量与沉积物上覆水和间隙水中TN、、DON浓度的坡向变化显著,但从新淹底部到边坡的变化幅度高于从原河道到新淹没底部,水位深度对沉积物-水界面氮形态分布的影响大于沉积物形成时间的影响.
[1]朱元荣,张润宇,吴丰昌.滇池沉积物中氮的地球化学特征及其对水环境的影响 [J]. 中国环境科学, 2011,31(6):978-983.
[2]Chong L S, Prokopenko M G, Berelson W M, et al. Nitrogen cycling within suboxic and anoxic sediments from the continental margin of Western North America [J]. Marine Chemistry, 2012,128(129):13-25.
[3]Denis L, Grenz C, Alliot E, et al. Temporal variability indissolved inorganicnitrogen fluxes at the sediment-water interfaceand related annual budget on a continental shelf (NW Mediterranean) [J]. Oceanologica Acta, 2001,24(1):85-97.
[4]Stimson J, Larned S T. Nitrogen efflux from the sediments of a subtropical bay and the potential contribution to macroalgae nutrient requirements [J]. Journal of Experimental Marine Biology and Ecology, 2000,252(2):159-180.
[5]Shang J G, Zhang L, Shi C J, et al. Influence of Chironomid Larvae on oxygen and nitrogen fluxes across thesediment-water interface (Lake Taihu, China) [J]. Journalof Environmental Sciences-China, 2013,25(5):978-985.
[6]张家春,林绍霞,张清海,等.贵州草海底泥-上覆水中氮磷含量时空分布特征 [J]. 广东农业科学, 2014,(9):184-188.
[7]史 静,俎晓静,张乃明,等.滇池草海沉积物磷形态、空间分布特征及影响因素 [J]. 中国环境科学, 2013,33(10):1808-1813.
[8]王秋娟,李永峰,姜 霞,等.太湖北部三个湖区各形态氮的空间分布特征 [J]. 中国环境科学, 2010,30(11):1537-1542.
[9]Testa J M, Brady D C, Ditoro D M, et al. Sediment flux modeling:Simulating nitrogen, phosphorus, and silicacycles [J]. Estuarine,Coastal and Shelf Science, 2013,131:245-263.
[10]Santos I R, Bryan K R, Pilsitch C A, et al. Influence of porewater exchange on nutrient dynamics in two NewZealand estuarine intertidal flats [J]. Marine Chemistry, 2014,167:57-70.
[11]焦立新.浅水湖泊表层沉积物氮形态特征及在生物地球化学循环中的功能 [D]. 呼和浩特:内蒙古农业大学, 2007.
[12]Ray R, Majumder N, Das S, et al. Biogeochemical cycle of nitrogen in a tropical mangrove ecosystem, east coast of India [J]. Marine Chemistry, 2014,167:33-43.
[13]黄小平,郭 芳,岳维忠.南海北部沉积物间隙水中营养盐研究[J]. 热带海洋学报, 2006,25(5):43-48.
[14]胡鹏飞,何太蓉.长寿湖表层沉积物中氮的赋存形态及污染评价[J]. 水土保持研究, 2012,19(4):163-167.
[15]潘延安,雷 沛,张 洪,等.重庆园博园龙景湖新建初期内源氮磷分布特征及扩散通量估算 [J]. 环境科学, 2014,35(5):1727-1734.
[16]王雯雯,王书航,姜 霞,等.洞庭湖沉积物不同形态氮赋存特征及其释放风险 [J]. 环境科学研究, 2013,26(6):598-605.
[17]高悦文,王圣瑞,张伟华,等.洱海沉积物中溶解性有机氮季节性变化 [J]. 环境科学研究, 2012,25(6):659-665.
[18]Zhang L, Wang S R, Wu Z H. Coupling effect of pH and dissolved oxygen in water column on nitrogen release at watersediment interface of Erhai Lake, China [J]. Estuarine, Coastal and Shelf Science, 2011,149:629-638.
[19]Xia X H, Liu T, Yang Z F, et al. Dissolved organic nitrogen transformation in river water: Effects of suspended sediment and organic nitrogen concentration [J]. Journal of Hydrology, 2013,484:96-104.
[20]张 彦,张 远,于 涛,等.太湖沉积物及孔隙水中氮的时空分布特征 [J]. 环境科学研究, 2010,23(11):1333-1342.
[21]陈 月,何连生,席北斗,等.流速对河道系统截留氮、磷的影响[J]. 环境科学研究, 2008,21(4):99-103.
[22]Jing L D, Wu C X, Liu J T, et al. The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects [J]. Ecological Engineering, 2013,52:167-174.
[23]Aigars J, Carman R. Seasonal and spatial variations of carbon and nitrogen distribution in the surface sediments of the Gulf of Riga,Baltic Sea [J]. Chemophere, 2001,43(3):313-320.
[24]Yu Y, Wu J, Wang X Y, et al. Degradation of Inorganic Nitrogen in Beiyun River of Beijing, China [J]. Procedia Environmental Sciences, 2012,13:1069-1075.
[25]Gardner W S, Mccarthy M J, CARINI S A, et al. Collection of intact sediment cores with overlying water to studynitrogen- and oxygen-dynamics in regions with seasonal hypoxia [J]. Continental Shelf Reserch, 2009,29(18):2207-2213.
[26]丰民义.东湖典型区域沉积物及间隙水中碳氮磷时空分布特征研究 [D]. 武汉:中国科学院水生物研究所, 2007.
[27]Han H J, Lu X X, Burger D F, et al. Nitrogen dynamics at the sediment-water interface in a tropical reservoir [J]. Ecological Engineering, 2014:146-153.
[28]Pauer J J, Auer M T. Nitrification in the water column and sediment of a hypereutrophic lake and adjoining river system [J]. Water Research, 2000,34(4):1247-1254.
[29]Dale A W, Sommer S, Bohlen L, et al. Rates and regulation of nitrogen cycling in seasonally hypoxic sediments during winter(Boknis Eck, SW Baltic Sea): Sensitivity to environmental variables[J]. Estuarine, Coastal and Shelf Science, 2011,95(1):14-28.
[30]Bohlin H S, Morth C, Holm N G. Point source influences on the carbon and nitrogen geochemistry of sediments in the Stockholm inner archipelago, Sweden [J]. Science of the Total Environment,2006,366(1):337-349.
[31]熊汉锋,谭启玲,王运华.梁子湖沉积物种氮磷分布特征研究 [J].华中农业大学学报, 2008,27(2):235-238.
[32]A Guidance Manual to support the assessment of Contaminated Sediments in Freshwater ecosystems [S]. US EPA, 2002.
[33]沈洪艳,张绵绵,倪兆奎,等.鄱阳湖沉积物可转化态氮分布特征及其对江湖关系变化的响应 [J]. 环境科学, 2015,36(1):87-93.
[34]Huo S L, Zhang J T, Xi B D, et al. Distribution of nitrogen forms in surface sediments of lakes from different regions, China [J]. Environ Earth Sci., 2014,71:2167-2175.
[35]Wang S R, Jin X C, Niu D L, et al. Potentially mineralizable nitrogen in sediments of the shallow lakes in the middle and lower reaches of the Yangtze River area in China [J]. Applied Geochemistry, 2009,24(9):1788-1792.
Distribution of nitrogen speciation at the sediment-water interface in Longjinggou Catchment Area of Longjinghu Lake.
JI Fang-ying*, YAN Hai-bo, ZHAO Gen, HE Qiang, NIU Feng-xia (Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China). China Environmental Science, 2015,35(10):3101~3107
Longjinghu Lake is a new deep lake based on the original channel with an artificial dam. Before comprehensive improvement, the sewage discharged into Longjinggou upstream is the main source of exogenous nitrogen of Longjinghu Lake. The paper aimed to investigate the space distribution characteristic of nitrogen forms and demonstrate the processes of nitrogen migration and transformation. According to the depth of water and aging age of sediments, sediment samples were collected from the three sampling regions including original channel, bottom region and slope of newly submerged area. Concentration of different nitrogen forms in the overlying water, interstitial water of sediment cores and total nitrogen in the surface sediment were analyzed. The results showed that there were existed similar speciation distribution trends of total nitrogen, ammonia nitrogen, and dissolved organic nitrogen in the above samples, and the distribution were: original channel > bottom region> slope area, which similar to the change trend of water depth. The average concentration of total nitrogen, ammonia nitrogen, dissolved organic nitrogen in the sediment interstitial water were 33.59, 14.62, 18.06mg/L and 23.01, 8.39, 13.75mg/L and 8.57, 2.81, 5.45mg/L respectively. The concentration change significantly along the slope and higher than that of overlying water, has great release potential. The average content of total nitrogen in the surface sediments from the original channel and the bottom region of newly submerged area were 3789 and 2984mg/kg respectively which was obviously higher than that of slope zone with the concentration of 1287mg/kg. The results could provide fundamentals for the prediction of internal load and the control of inner source pollution.
Longjinghu Lake;sediment-water interface;nitrogen;spatial distribution
X524
A
1000-6923(2015)10-3101-07
吉芳英(1964-),女,四川内江人,教授,博士,主要从事水污染控制理论与技术,环境规划与管理,环境质量评价等方向的研究.发表论文100篇.
2015-03-06
国家水体污染控制与治理科技重大专项(2012ZX07307-001)
* 责任作者, 教授, jfy@cqu.edu.cn
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!