时间:2024-07-28
伍 波,李 鹏,张 波,王立章(中国矿业大学环境与测绘学院,江苏 徐州 221116)
负载型粒子电极电催化氧化苯酚的研究
伍波,李鹏,张波,王立章*(中国矿业大学环境与测绘学院,江苏 徐州 221116)
以颗粒活性炭(AC)为载体,分别采用氧化还原法和热分解法制备了炭载纳米 MnO2、SnO2-Sb-Mn粒子电极,并通过 X射线衍射(XRD)、扫描电镜(SEM)及电化学测试对其物相组成、微观形貌和电催化活性进行表征.结果表明,制备的 MnO2晶粒主要以 α-MnO2与δ-MnO2晶型聚团存在于 AC孔隙边缘,SnO2-Sb-Mn活性组分则以固溶体形式分布于 AC表面及孔隙内,两类晶体平均粒径分别为11.47,13.70nm,金属氧化物镀层可增加循环伏安曲线测试过程的伏安电荷量,提高粒子电极电催化活性.填充床苯酚模拟废水电催化降解实验表明,MnO2/AC与SnO2-Sb-Mn/AC填充床电极反应器出水苯酚及COD去除率均高于AC填充床,电流效率增大而能耗降低.在电流密度12.0mA/cm2和反应时间140min条件下,SnO2-Sb-Mn/AC粒子电极的苯酚及COD去除率分别为94.7%和90.4%,电流效率达62.7%,能耗为20.3kWh/kgCOD.
电催化氧化;负载型粒子电极;填充床电极反应器;苯酚
填充床电极反应器因粒子电极的添加,形成了无数个微型电解槽,增加有机物向电极活性位点的传质效率,从而使得污染物去除效率高,电能消耗量低,被广泛地应用于印染、纺织、焦化废水及垃圾渗滤液的处理[1-4].电极表面活性组分在析氧过电位下催生羟基自由基(·OH)的多寡决定了有机物的氧化程度与电流效率的高低[5-6],提高有机污染物电催化降解过程活性物质含量成为一个研究热点[7,11].阳极(DSAs、BDD、石墨等)受其几何面积的限制,能够参与有机物电催化反应的活性组分少;粒子电极通常具有较大的比表面积,但存在电催化反应过程复极化程度低,电极表面有效活性位点数不足的问题,即使改变粒子电极的堆放方式[8]或采用不同粒子电极的机械混合[9],亦难以提高体系的电催化效率.以负载金属催化剂的多孔粒子电极为填料,可有效克服阳极电极面积小,粒子电极复极化程度低的问题[10-11].目前,常用的粒子电极有颗粒活性炭(AC)、γ-Al2O3、陶瓷粒子、泡沫钛等[12-15],其中AC因原材料易得、价格低廉、耐酸碱腐蚀性强等优点而被广泛使用于工业有机废水的电催化处理[16-17],但AC填充床电极反应器亦存在催化活性低而造成活性位点覆盖、床层过热等缺陷,故炭基粒子电极的电化学性能有待于进一步提升.
本研究将半导体金属氧化物(MnO2、SnO2-Sb-Mn)负载于AC基底,采用X射线衍射(XRD)、扫描电镜(SEM)对制备的 MnO2/AC、SnO2-Sb-Mn/AC粒子电极物相组成和微观形貌进行表征;在[Fe(CN)6]4-/[Fe(CN)6]3-电解质中测试循环伏安(CV)性能进行粒子电极电催化活性评估.同时,以AC、MnO2/AC及SnO2-Sb-Mn/AC负载型粒子电极组建填充床电极反应器,借助苯酚废水氧化降解效率、紫外吸收光谱(UV)分析及气相色谱-质谱联用仪(GC-MS)测试,研究不同粒子电极苯酚电催化氧化苯酚特性,以期为负载型粒子电极的优化制备提供实验依据.
1.1粒子电极制备与表征
粒子电极制备:AC比表面积为 1660m2/g,经煮沸、除灰分预处理后待用[6].在配制的MnSO4与KMnO4(物质的量比 3:2)混合溶液中加入AC,首先超声分散40min,而后120℃水热条件下反应 2h,于 70℃时烘干可得 MnO2/AC. 将 Mn(NO3)2、SnCl4·5H2O、SbCl3(物质的量比10:10:1)在浓盐酸、无水乙醇中溶解制备前驱体,加入AC超声分散40min后,静置3h,在70℃条件下烘干;然后将所得的中间产物在氮气保护下于550℃煅烧4h;上述步骤重复2遍后可完成SnO2-Sb-Mn/AC的制备.
粒子电极表征:采用 X射线衍射仪(Bruker Corp,D8Advance)对粒子电极物相组成进行分析;测试条件:阳极靶材料为Cu,管电压40kV,管电流30mA.扫描电子显微镜(FEI Corp,quanta250),工作电压 30.0kV.粒子电极电化学性能采用三电极体系在 IM6电化学工作站(Zahner)上表征,工作条件: IrO2-Ta2O5/Ti为工作电极(尺寸 2cm× 2cm),Pt电极为辅助电极(尺寸4cm×4cm),饱和甘汞电极(SCE)为参比电极.测试时将粒子电极置于工作电极和辅助电极之间,于 5.0mmol/L K3Fe(CN)6和5.0mmol/L K4Fe(CN)6溶液中测定循环伏安曲线,测试范围为 -0.2~1.2V(vs.SCE),扫描速率v为20mV/s.
1.2苯酚电催化氧化
苯酚的电催化氧化分别以IrO2-Ta2O5/Ti、Ti板为阳、阴极,尺寸均为10cm×10cm;极板间距为5cm,电极之间分别填充 AC、MnO2/AC、SnO2-Sb-Mn/AC粒子组成填充床电极反应器,装置图详见文献[6].模拟废水苯酚浓度为600mg/L,Na2SO4质量浓度为3%.在电流1.2A,进水流速0.5L/h的条件下开展动态实验,并定时取样进行分析.
1.3分析方法
根据谢乐公式[10]可计算粒子电极表面晶粒晶格尺寸D:
式中:k为常数,取 0.89;λ为 X射线波长,为0.154056nm; FW(S)为样品衍射峰半高宽度,rad;θ为衍射角,rad.
苯酚浓度的测定采用 4-氨基安替比林分光光度法(HJ 503-2009);使用重铬酸钾回流法[18]测定出水COD浓度并计算去除率(η):
式中:COD0和CODt分别为初始及t时刻COD的浓度,mg/L.
苯酚电催化氧化过程中能耗(Esp, kWh/ kgCOD)和电流效率(ACE)的计算公式[10,19]可表述为:
人寿险可以选择定期寿险及终身寿险,从性价比上来看,定期寿险会是较优的选择,一般来说女性费率更低,缴费期限选择较长的较好。健康险除了上述的百万医疗,还可以额外为自己加一份女性特定重疾保障。意外险建议选择30万或50万保额,保障责任可以以自己需求来选择。
式中:U为操作电压,V;I为电流,A;Q为进水流速, L/h; F为法拉第常数(96485C/mol).
采用紫外可见分光光度计(型号 SP756PC)在190~300nm波长范围内对水样吸光度进行扫描. GC-MS(型号安捷伦5975c-7890A),测试条件:进样体积 0.2uL;色谱柱(DB-5MS,30mDB-5M mmB-5MS μm);进样口温度250℃;炉温50℃,保留 4min,以 8℃/min的速率升温至 110℃,再以10℃/min升温至250℃,保留4.5min;载气为氦气,柱流速度 1.2mL/min;质谱条件:电轰击(EI)电离方式,电子能量70eV,质量数范围35~500.
2.1XRD分析
由图1可看出,在2θ为12.784, 18.107, 28.841, 37.522, 41.968, 49.864, 60.274°处出现了明显的特征衍射峰(图 1(a)),参照标准 PDF卡 No.44-0141可断定为α-MnO2的特征峰[20];根据标准卡No.52-0556在衍射角 12.340, 24.799, 42.167, 65.494°处有δ-MnO2特征衍射峰[22].由于α-MnO2和δ-MnO2分子内较大的羟基含量以及易于离子扩散的构型而具有较强的催化氧化活性[21-22].此外,依据标准PDF卡No.50-0927可知MnO2/AC粒子电极XRD谱图在衍射角50.493° 和74.198°处发现微弱的炭基底衍射峰,说明形成的MnO2晶体存在于AC表面,基底炭裸露较少. 图1(b)中活性组分SnO2可由XRD谱图在衍射角26.611, 33.893, 51.780°的衍射峰确定(JCPDS 41-1445),同时在 2θ为 18.107, 28.841, 37.522, 60.274, 69.711°处发现了 α-MnO2(JCPDS 44-0141),但未检测到锑氧化物;这是由于 5价的Sb原子能够取代SnO2晶格中4价的Sn原子而进入到 SnO2颗粒中[23-24],其与二氧化锡的晶粒衍射峰无明显差别.与此同时,SnO2-Sb-Mn/AC粒子电极较弱的衍射峰强度表明锡锑锰金属氧化物以不规则的无定形状态存在,这与3类氧化物的固溶存在形式有关[25].依据炭原子标准PDF卡No.26-1081在衍射角为 43.450°和 75.302°显示基底衍射峰,相对 MnO2/AC粒子,基底衍射峰有所增强.采用 MnO2/AC粒子电极 XRD谱图α-MnO2的(110)、(310)、(211)衍射峰半高宽度,SnO2-Sb-Mn/AC粒子电极XRD谱图(211)、(521)衍射峰的半高宽度,由谢乐公式计算出两粒子电极表面晶体平均尺寸分别为11.47,13.70nm.
图1 MnO2/AC (a)、SnO2-Sb-Mn/AC (b)粒子电极的XRD谱图Fig.1 XRD spectrums of MnO2/AC (a) and SnO2-Sb-Mn/AC (b) particulate electrodes
2.2SEM分析
由图2可见,未负载的活性炭表面具有显著的裂缝和大孔结构,负载MnO2、SnO2-Sb-Mn活性组分后炭表面变的平整,不规则孔隙结构消失,且不同类型金属氧化物在活性炭表面存在的形式不同,这主要体现在活性组分对炭表面结构覆盖情况以及存在形态.MnO2/AC表面的锰氧化物颗粒聚团生长,形成球状结构固着于炭颗粒孔隙边缘,不利于活性点的形成,同时这种结构的活性层较易脱落,从而影响粒子电极的使用寿命和废水处理效果;另外,大量络合存在的MnO2晶粒亦能使MnO2/AC粒子电极炭原子的XRD检出峰微弱.SnO2-Sb-Mn/AC出现了结晶化的活性组分,且以纳米半导体锡锑锰氧化物形成的固溶活性体存在于 AC孔隙及裂缝结构中,保障了粒子电极的寿命及孔隙内有机污染物的电催化氧化;同时SnO2-Sb-Mn/AC粒子电极的炭基底裸露较多,这也与 XRD谱图中出现的较强炭原子衍射峰相对应.
图2 粒子电极SEM图Fig.2 SEM images of particulate electrodes
2.3CV分析
图3 [Fe(CN)6]4-/[Fe(CN)6]3-体系中不同粒子电极的CV曲线Fig.3 Cyclic voltammetric curves of different particulate electrodes in a [Fe(CN)6]4-/[Fe(CN)6]3-system
2.4苯酚电催化氧化降解分析
由图4可知,负载半导体金属氧化物的粒子电极降解苯酚效果均优于 AC:反应 140min时,MnO2/AC、SnO2-Sb-Mn/AC粒子电极的苯酚和COD去除率分别为 74.8%、72.1%和 94.7%、90.4%,高于AC粒子电极体系的70.1%、67.6%;这主要是因为 AC表面存在的活性组分增强了粒子催生·OH的能力,从而显著强化了体系的电催化效率.同时,与 MnO2/AC粒子电极相比, SnO2-Sb-Mn/AC粒子电极在氧化苯酚时表现出尤为明显的优势,一方面SnO2与MnO2协同作用于阳极氧化副产物 O2,使其转化为·OH 、·O-2、·O-、·HO-2等氧化剂[28],并且 Sb元素在提高复合氧化物导电性的同时,可增强 SnO2-Sb-Mn/AC粒子电极在外电场的极化作用,进一步催生·OH;另一方面锡锑锰氧化物形成的纳米固溶体分布于 AC孔隙及裂缝结构中,可增加粒子电极孔隙内吸附的有机污染物与电催化产生的活性基团的接触面积,继而加速氧化反应的发生.由图5可以看出,反应时间为140min时, MnO2/AC 与SnO2-Sb-Mn/AC粒子电极的AC E、Esp分别为62.7%、20.3kWh/kgCOD和50.9%、26.1kWh/ kgCOD,与AC粒子电极(48.4%、29.1kWh/kgCOD)相比,炭载金属氧化物活性组分能够有效提高电催化氧化体系的电流效率并节约能耗.
为探究不同粒子电极对苯酚的降解特性,分别对 600mg/L苯酚溶液不同反应时间出水取样进行UV和GC-MS分析,结果分别如图6、7所示.由图 6可知,处理前的水样在 269.4nm和217nm波长处出现了苯酚特征吸收峰,且随着电催化氧化的进行,3种粒子电极的出水在该波长处的吸光度逐渐降低,说明苯环共轭体系被逐渐破坏.采用AC粒子电极时,水样在波长235nm处出现了新的吸收峰,该峰是环境毒害性更强的醌类化合物的特征峰[31],而负载型粒子电极体系在235nm波长处并未出相应特征峰,表明炭载金属氧化物粒子电极可在显著增强电催化性能的同时,减少了有毒有害中间产物的积累.对比图6(b)与 6(c),还可观察到与 MnO2/AC粒子电极相比,SnO2-Sb-Mn/AC在269.4nm和217nm波长处苯酚的吸光度下降速率更快,这与其苯酚氧化结果(图4)相一致.图7发现,不同粒子电极140min出水中除含有未降解的苯酚(保留时间8.552min)外,AC粒子电极在保留时间 14.292min和5.422min还存在苯醌、马来酸特征离子峰[32],而负载型粒子电极出水并未检测出苯醌,说明负载型粒子电极具有缩短苯酚降解路径的特性;同时,MnO2/AC粒子电极电催化氧化出水中还检测到微量的马来酸类小分子有机物,而 SnO2-Sb-Mn/AC出水水样中未捕捉到中间产物,表明AC表面锡锑锰氧化物形成的活性固溶体对苯酚的矿化效果较MnO2单组分明显提高.
图5 不同粒子电极电催化氧化苯酚ACE和Esp对比Fig.5 The contrast of ACE and Espof different particulate electrodes on phenol oxidation
图6 不同粒子电极出水UV谱图Fig.6 UV spectra of different particulate electrodes (a) AC;(b) MnO2/AC;(c)SnO2-Sb-Mn/AC
图7 不同粒子电极反应140min时出水GC-MS谱图Fig.7 The GC-MS spectra of different particulate electrodes at reaction time of 140min
3.1实验表征结果显示制备的 MnO2晶粒主要以α-MnO2、δ-MnO2晶型聚团固着于AC孔隙边缘,SnO2-Sb-Mn活性组分则以固溶体形式存在于 AC孔隙及裂缝结构中,两粒子电极表面晶格平均尺寸分别为11.47nm和13.70nm.
3.2AC、MnO2/AC与SnO2-Sb-Mn/AC粒子电极体系的循环伏安测试结果说明负载金属氧化物可增加伏安电量数值,即提高粒子电极催化活性,且三者的伏安电荷量分别为0.361C、0.436C、0.912C.
3.3苯酚模拟废水电催化氧化实验表明, MnO2/AC、SnO2-Sb-Mn/AC粒子电极可实现高效节能,且未出现苯醌类等环境毒害较强物质的积累,具有缩短苯酚降解路径的特性.
[1] Xiong Y, Strunk P J, Xia H G, et al. Treatment of dye wastewater containing acid orangeⅡusing a cell with three-phase threedimensional electrode [J]. Water Research, 2001,35(7):4226-4230.
[2] Jung K W, Hwang M J, Park D S, et al. Combining fluidized metal-impregnated granular activated carbon in threedimensional electrocoagulation system: feasibility and optimization test of color and COD removal from real cotton textile wastewater [J]. Separation and Purification Technology, 2015,146:154-167.
[3] Lv Y L, Wang Y Q, Shan M G, et al. Denitrification of coking wastewater with micro-electrolysis [J]. Journal of Environmental Sciences, 2011,23:S128-S131.
[4] Rao N N, Rohit M, Nitin G, et al. Kinetics of elecrooxidation of landfill leachate in a three-dimensional carbon bed electrochemical reator [J]. Chemosphere, 2009,76(9):1206-1212.
[5] Panizzaa M, Kapalka A, Comninellis Ch. Oxidation of organic pollutants on BDD anodes using modulated current electrolysis[J]. Electrochimica Acta, 2008,53(5):2289-2295.
[6] Wang L Z, Fu J F, Qiao Q C, et al. Kinetic modeling of electrochemical degradation of phenol in a three-dimension electrode process [J]. Journal of Hazardous Materials, 2007, 144(1/2):118-125.
[7] Fierro S, Ouattara L, Comninellis C, et al. Investigation of formic acid oxidation on Ti/IrO2electrodes [J]. Electrochimica Acta, 2009, 54:2053-2061.
[8] 钟锐超,周德鸿,陈卫国,等.粒子电极堆放方式对三维电极体系性能的影响研究 [J]. 环境科学学报, 2011,31(10):2174-2178.
[9] 班福忱,刘炯天,程 琳,等.不同类型填料的三维电极/Fenton试剂法处理苯酚废水 [J]. 环境污染与防治, 2009,31(4):24-27.
[10] Li P, Zhao Y M, Wang L Z, et al. New strategy of using stannic oxide as catalyst in a three-dimension electrode reactor for the electro-oxidation of organic matter [J]. Journal of New Materials for Electrochemical Systems, 2014,17(4):243-249.
[11] 孙玲芳,喻泽斌,彭振波,等.Fe-Ni-TiO2/AC粒子电极的制备及可见光光电催化协同降解RhB [J]. 中国环境科学, 2014,34(12):3119-3126.
[12] Zhao X, Li A Z, Ran M, et al. Electrochemical removal of haloacetic acids in a three-dimensional electrochemical reactor with Pd-GAC particles as fixed filler and Pd-modified carbon paper as cathode [J]. Water Research, 2014,51:134-143.
[13] Yuan S H, Mao X H, Alshawabkeh A. Efficient degradation of TCE in groundwater using Pd and electro-generated H2and O2:A shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions [J]. Environmental Science & Technology, 2012,46(6):3398-3405.
[14] 徐海青,刘秀宁,王育乔,等.复合金属氧化物 Sn-Sb-Mn/陶瓷粒子电极体系的电催化性能 [J]. 物理化学学报, 2009,25(5):840-846.
[15] Fockedey E, Lierde A V. Coupling of anodic and cathodic reactions for phenolelectro-oxidation using three-dimensional electrodes [J]. Water Research, 2002,36:4169-4175.
[16] Liu Zh G, Wang F F , Li Y S, et al. Continuous electrochemical oxidation of methyl orange waste water using a threedimensional electrode reactor [J]. Journal of Environmental Sciences, 2011,23:S70-S73.
[17] Gedam N, Rao N N. Carbon attrition during continuous electrolysis in carbon bed based three-phase three-dimensional electrode reactor: treatment of recalcitrant chemical industry wastewater [J]. Journal of Environmental Chemical Engineering, 2014,2(3):1527-1532.
[18] 奚旦立,孙裕生,刘秀英.环境监测 [M]. 北京:高等教育出版社, 2002:109-111.
[19] Andrade L S, Tasso T T, Bocchi N, et al. On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the Reactive Orange 16dye [J]. Electrochimica Acta, 2009,54(7):2024-2030.
[20] Wang H G, Lu Z G, Qian D, et al. Facile synthesis and electrochemical characterization of hierarchical α-MnO2spheres[J]. Journal of Alloys and Compounds, 2008,466(1/2):250-257.
[21] Selvakumar K, Senthil K S M, Thangamuthu R, et al. Development of shape-engineered α-MnO2materials as bifunctional catalysts for oxygen evolution reaction and oxygen reduction reaction in alkaline medium [J]. International Journal of Hydrogen Energy, 2014,39(36):21024-21036.
[22] Zhu M X, Wang Z, Xu S H. Decolorization of methylene blue by δ-MnO2-coated montmorillonite complexes: Emphasizing redox reactivity of Mn-oxide coatings [J]. Journal of Hazardous Materials, 2010,181(1-3):57-64.
[23] Kim S, Choi S K, Yoon B Y, et al. Effects of electrolyte on the electrocatalytic activities of RuO2/Ti and Sb-SnO2/Ti anodes for water treatment [J]. Applied Catalysis B: Environmental, 2010, 97(1/2):135-141.
[24] Feng Y J, Cui Y H, Liu J F, et al. Factors affecting the electrocatalytic characteristics of Eu doped SnO2/Sb electrode [J]. Journal of Hazardous Materials, 2010,178(1-3):29-34.
[25] 褚秋霞,梁镇海,孙颜发,等.稀土Y掺杂Ti/SnO2+MnOx/PbO2电极的电化学性能研究 [J]. 稀有金属材料与工程, 2009,38(5):821-825.
[26] 李保松,林安,甘复兴.Ti/IrO2-Ta2O5阳极的制备及其析氧电催化性能研究 [J]. 稀有金属材料与工程, 2007,36(2):245-249.
[27] Wong K N, Khiew P S, Isa D, et al. Facile synthesis of flowerlike PbO as a precursor to form nanodendritic PbO2for positive active material (PAM) of lead-acid electrochemical Storage devices [J]. Materials Letters, 2014,128:97-100.
[28] 张芳,李光明,盛怡,等.电催化氧化法处理苯酚废水的Mn-Sn-Sb/γ-Al2O3粒子电极研制 [J]. 化学学报, 2006,64(3):235-239.
[29] Kong J T, Shi S Y, Zhu X P, et al. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2electrodes in the oxidation of 4-chlorophenol [J]. Journal of Environmental Sciences, 2007,19(11):1380-1386.
[30] Lin H, Niu J F, Ding S Y, et al. Eletrochemical degradation of perfluorooctanonic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb/MnO2anodes [J]. Water Research, 2012,46(7):2281-2289.
[31] Feng Y J, Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution [J]. Water Research, 2003,37(10):2399-2407.
[32] 张芳,李光明,张志刚,等.Mn-Sn-Sb/γ-Al2O3粒子电极对苯酚的降解特性 [J]. 化工学报, 2006,57(10):2515-2521.
Electro-catalytic performance of the activated carbon supported metal oxide as particulate electrode for phenol oxidation.
WU Bo, LI Peng, ZHANG Bo, WANG Li-zhang*(School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China).
China Environmental Science, 2015,35(8):2426~2432
Granular activated carbon (AC) was used as substrate for fabricating of nano MnO2and SnO2-Sb-Mn loaded catalytic particulate electrodes with redox and thermal decomposition methods, respectively. The phase composition, micro-morphology and electrocatalytic activity of the newly prepared particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques as well as electrochemical test. The results showed that the as-prepared manganese oxide was mainly shaped in α-MnO2and δ-MnO2, which fixed in AC pore edge. SnO2-Sb-Mn component exist as the solid solution distributed on the surface and in the pore structure of AC. The average size of the two crystal was 11.47 and 13.70nm. Metal oxide coatings could increase voltammetric charges during the cyclic voltammetry (CV) scanning process, and improve electrical catalytic activity of particle electrodes. Bulk electrolysis experiments in packed bed electrochemical reactor were conducted with simulated phenol wastewater. The experiments data displayed that the removal of phenol and COD concentration with MnO2/AC and SnO2-Sb-Mn/AC filling were better than that of virgin AC, higher current efficiency and lower energy consume would be realized. The removal ratio of phenol and COD on SnO2-Sb-Mn/AC particles was as high as 94.7%, 90.4% under 12mA/cm2current density during 140min purification, with concurrent ACE reached about 62.7% and Esp20.3kWh/kgCOD.
electro-catalytic oxidation;supported particulate electrode;packed bed electrochemical reactor;phenol
X703
A
1000-6923(2015)08-2426-07
2015-01-16
国家自然科学基金委员会创新研究群体科学基金(51221462);国家自然科学基金项目(50908226);中央高校基本科研业务费专项资金资助项目(2013QNA20)
* 责任作者, 副教授, dhxktz@126.com
伍波(1990-)男,湖南长沙人,中国矿业大学硕士研究生,主要从事水处理技术研究.
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!