当前位置:首页 期刊杂志

鄂尔多斯盆地北部深埋煤层工作面涌水量预测方法

时间:2024-07-28

杨 建,王 皓,梁向阳,黄 浩

鄂尔多斯盆地北部深埋煤层工作面涌水量预测方法

杨 建1,2,王 皓1,2,梁向阳1,2,黄 浩1,2

(1. 中煤科工集团西安研究院有限公司,陕西 西安 710077;2. 陕西省煤矿水害防治技术重点实验室,陕西 西安 710077)

鄂尔多斯盆地北部侏罗纪深埋区中生代地层以河流相沉积为主,呈分阶段的多旋回演化特点,导致煤层顶板含隔水层交替分布;由于地表大部分为毛乌素沙漠,降水入渗补给系数大,第四系松散层储水能力强,充足的补给水源造成煤层顶板直接充水含水层富水性较强,其中最主要的充水含水层为七里镇砂岩,以七里镇砂岩为关键层,将煤层至七里镇砂岩概化为一个直接充水含水层。承压水井大降深抽水时,当井中水位低于含水层顶板,井附近的含水层会出现无压水流区,形成承压–无压水井,采用分段法计算流向井的流量,包括无压水区和承压水区。实际工作面回采过程中,井中水位已降低至煤层底板;传统的承压–无压水井公式假设条件为井径较小(≤m级),而实际工作面回采过程中,随着覆岩导水裂隙带对七里镇砂岩关键充水含水层的破坏,导致整个煤层顶板形成巨大的采空区疏水井(102~103m级),且该采空区疏水井半径逐渐增大,传统公式适用性不高。基于《地下水动力学》中的承压–无压水井公式,结合鄂尔多斯盆地北部深埋煤炭开采过程中采空区疏水井演化过程,建立适合于深埋区开采扰动下的采空区疏水井承压–无压水公式;以葫芦素煤矿首采工作面为研究对象,利用地质勘探和井下揭露获得的相关水文地质参数,计算葫芦素煤矿首采工作面回采过程中涌水量。结果表明:工作面回采初期,由于导水裂隙带未充分发育,尚未沟通七里镇砂岩,此阶段实际涌水量偏小;中后期导水裂隙带发育至七里镇砂岩,涌水量计算值与实际值较为接近,证明深埋煤层工作面涌水量计算公式可较准确地预测研究区工作面回采过程中的涌水量。本次建立的深埋工作面涌水量计算公式,广泛适用于我国西部侏罗纪煤田区,可为深埋煤田区煤炭资源安全开采提供科学的水害防治依据。

深埋工作面涌水量计算公式;巨型疏水井;砂泥岩互层结构;影响半径;鄂尔多斯盆地北部

鄂尔多斯盆地是印支运动后形成的中生代大型内陆坳陷[1],在早中侏罗世形成了丰富的煤炭资源[2],浅埋煤田区在近30 a进行了高强度开采活动[3],由于水文地质条件相对简单、顶板富水性较弱,矿井涌水量普遍较小[4]。但随着煤炭资源开采向蒙陕接壤区的深埋煤田区延伸,顶板水害问题日趋严重[5-6],其中最主要的问题是煤炭开采过程中矿井涌水量远大于地质勘探时期和矿井防排水设计的预测值[7],导致矿井排水系统难以满足井下排水需求,威胁矿井生产安全。矿井涌水量是指矿井开采期间单位时间流入矿井的水量[8],是通过矿井采掘工程揭露/导通含水层而导致充水水源的水流入矿井[9],其中工作面涌水量来自工作面回采过程中导水裂隙带范围内的多层含水层,是具有生产实际意义的矿井涌水量之一[9]。

工作面涌水形成的实质是回采过程中顶板覆岩破坏形成垮落带和导水裂隙带(简称“两带”),在“两带”范围内发育的直接充水含水层水涌入采空区[10]。对工作面涌水量变化规律进行预测,比较常用的方法包括大井法、集水廊道法、动静储量法[11-12]、比拟法等,近年来相关学者还从系统动力学[10]、时间序列[13]等方面开展了研究。但鄂尔多斯盆地北部中生代地层以河流相沉积为主[14-15],呈分阶段的多旋回演化特点[16],煤层顶板含隔水层交替分布,富水性不均一[17],缺少适合该区域的科学合理的工作面涌水量计算公式。鉴于此,基于顶板含水层分布[18]、顶板含水层富水性[19]、采动覆岩破坏规律等条件,建立科学合理的工作面涌水量预测方法,是准确预测回采过程中工作面涌水量和提前合理制定防治水技术方案的前提,以期为深埋煤田区煤炭资源安全开采提供科学的水害防治依据。

1 研究区概况

鄂尔多斯盆地北部侏罗纪煤炭深埋区位于蒙陕交界位置,属于鄂尔多斯剥蚀高原向陕北黄土高原过渡地带,包括新街、呼吉尔特、纳林河、榆横、榆神等矿区(图1),毛乌素沙漠占据区内大部分地区,地势总体由西北向东南降低,局部起伏较大,高程1 100~1 500 m,盆地北部的东胜–盐池梁高程1 500 m左右[20];研究区内南北地势较高、中间相对低平。区内地表水系主要有黄河水系和红碱淖内陆水系,多以羽状和树枝状排列,其中黄河一级支流无定河流经纳林河和榆横矿区;红碱淖内陆水系由风蚀洼地形成,湖水依赖季节性河流、湖面降水和地下水补给[21]。本地区多年平均降水量在400 mm左右,差异不大;蒸发量一般为降水量的4~6倍。研究区以三叠系延长组为基底,由下向上分别发育侏罗系、白垩系和第四系,其中侏罗系延安组为主要含煤地层,向上与直罗组不整合接触,安定组则是区域性较稳定的相对隔水层,白垩系志丹群与第四系构成水力联系密切的地下含水系统;区内地势平缓,地面多为第四系萨拉乌苏组松散层和全新统风积沙,渗透性好,为大气降水入渗起到良好的导渗作用[22-23],很少形成沟谷和地表水体,因而区内地表水系极不发育,形成富水性较强的第四系和白垩系含水层,并为侏罗系地层提供丰富的入渗补给水源。

图1 鄂尔多斯盆地北部侏罗纪煤炭深埋区位置及范围

2 顶板含水层分布特征

研究区属于鄂尔多斯盆地北部侏罗纪煤炭深埋区,主采煤层(3-1煤或2煤)埋深普遍大于500 m;第四系和白垩系含水层属于中等–强富水含水层,白垩系底部距离主采煤层顶板在300 m以上;在纳林河二号和巴彦高勒煤矿开展的导水裂隙带实测结果分别为103.2 m(裂采比18.8)和126.0 m(裂采比22.0),考虑到研究区范围内主采煤层厚度小于7.0 m,因此,导水裂隙带发育高度一般不超过150 m,可发育至直罗组一段(七里镇砂岩段),不会对第四系和白垩系含水层产生直接影响;直罗组二段属于曲流河和三角洲沉积,由河床和河漫滩亚相构成,亚相分流河道砂体不发育,边滩亚相中–细粒砂岩和漫滩亚相粉砂岩和砂质泥岩组成典型的“二元结构”,与直罗组一段相比,河流规模明显减小,河漫滩沉积范围进一步加大;安定组时期淡水湖盆范围较直罗组的明显扩大,研究区主要为滨湖相细粒砂岩和粉砂岩互层,其中细粒砂岩呈透镜状,含水性差,与直罗组二段都属于砂泥岩互层结构,共同构成相对隔水层,浅部含水层水主要以渗流和越流形式缓慢下渗。

在导水裂隙带范围内(包括延安组三段和直罗组一段),由于河流回春的沉积旋回作用,在直罗组一段底部沉积了中粗粒的七里镇砂岩段(图2和表1),并在地下水长期入渗过程中形成富水性中等–较强的含水层。通过在不同矿井工作面顶板施工探查钻孔发现,由于直罗组与延安组呈不整合接触,导致真武洞砂岩被剥蚀或与七里镇砂岩构成同一含水层,因此,本研究以七里镇砂岩为关键层,将煤层至七里镇砂岩概化为一个直接充水含水层。

图2 鄂尔多斯盆地北部侏罗纪煤炭深埋区地层柱状图

表1 七里镇砂岩含水层分布特征

3 预测方法构建及讨论

3.1 公式构建

承压水井大降深抽水时,当井中水位低于含水层顶板,井附近含水层会出现无压水流区,形成承压–无压水井,采用分段法计算流向井的流量[24],包括无压水区和承压水区(图3a)。实际工作面回采过程中,由采空区及其顶板“两带”构成的巨型疏水井(简称采空区疏水井),其井中水位已降低至煤层底板(图3b),此时井中水位w=0,无压水区边界水头为+0,则无压水区涌水量计算公式为:

式中:为动态补给量;为渗透系数;为含水层厚度;0为含水层底板至煤层底板距离;为无压水区影响半径;w为水井半径。

承压水区涌水量计算公式为:

式中:0为含水层初始水位;为承压水区影响半径。

通过无压水区影响半径将式(1)和式(2)进行耦合,得到开采扰动下承压–无压水涌水量计算公式:

对于工作面形成的采空区有:

式中:为工作面采空区的走向长度;为工作面采空区的倾向长度。

图3 煤层开采过程中承压–无压水井变化特征

3.2 参数确定

以呼吉尔特矿区葫芦素煤矿首采工作面为研究对象,煤层厚度1.83~3.25 m(采高2.85 m),煤层顶板埋深623.45~646.08 m,直罗组底板距煤层顶板平均约70.0 m,七里镇砂岩含水层初始水位0=480 m;整个工作面推采长度4 150 m,宽度320 m。鄂尔多斯盆地中生代为河流相沉积,具有显著的非均质性,准确计算工作面回采过程中的涌水量,获取真实客观的水文地质参数是关键,因此,本次充分收集了研究区各阶段的抽水试验数据,为实现与实际特征更相近的含水层概化提供支撑。

1) 渗透系数()

葫芦素煤矿在煤田地质勘探、水文地质补勘、井检孔和工作面顶板预疏放钻孔施工阶段,均开展了大段抽水试验(2煤顶—直罗组一段),获得的煤层顶板含水层渗透系数相差2个数量级(表2),主要是由于河流相沉积形成富水性极不均一的砂体,而对于整个矿井和工作面,顶板直接充水含水层又以均一含水层进行概化,因此,取所有钻孔抽水试验的渗透系数平均值作为本次涌水量计算的渗透系数值(即=0.054 9 m/d)。

表2 工作面顶板地层渗透系数

2) 含水层厚度()

水文地质补勘阶段施工的H7、HK23、H17、HK44、H27钻孔,以及顶板探放水阶段施工的H8-3、H10-1、Y10-1、Y8-3取心孔,地层揭露表明,含水层厚度为13.4~51.1 m(平均30.6 m),因此,取含水层厚度=30.6 m。

3) 承压水区影响半径()

3.3 计算结果分析

根据前文获得的工作面尺寸和水文地质参数,利用深埋煤层工作面涌水量计算公式(3),开展葫芦素煤矿首采工作面涌水量预测计算,计算结果见表3。对比涌水量计算值和实际值(c)(图4)可以看出,工作面回采0~400 m的初始阶段,由于导水裂隙带未充分发育,未波及沟通七里镇砂岩,导致这个阶段实际涌水量偏小;中后期(回采距离大于600 m)涌水量计算值与实际值较为接近,证明该深埋煤层工作面涌水量计算公式(3)可以较准确地预测工作面回采过程中的涌水量。

表3 工作面水文地质参数及涌水量预测结果

图4 工作面回采过程中涌水量计算值和实测值

4 结论

a.基于《地下水动力学》中承压–无压水井公式,结合鄂尔多斯盆地北部深埋煤炭开采过程中采空区疏水井演化过程,建立了适合于深埋区开采扰动下的采空区疏水井承压–无压水公式。

b.以鄂尔多斯盆地葫芦素煤矿首采工作面为研究对象,利用地质勘探和工作面疏放水等确定了渗透系数、含水层初始水位、含水层厚度、影响半径等参数,并开展葫芦素煤矿首采工作面回采过程中涌水量计算。

c. 对比涌水量计算值和实际值,工作面回采0~400 m段的初始阶段,由于导水裂隙带未充分发育沟通七里镇砂岩,导致此阶段实际涌水量偏小;中后期(>600 m)导水裂隙带发育至七里镇砂岩,涌水量计算值与实际值较为接近,证明提出的深埋煤层工作面涌水量计算公式可以准确预测研究区工作面回采过程中的涌水量。

[1] 王双明. 鄂尔多斯盆地构造演化和构造控煤作用[J]. 地质通报,2011,30(4):544–552.

WANG Shuangming. Ordos Basin tectonic evolution and structural control of coal[J]. Geological Bulletin of China,2011,30(4):544–552.

[2] 张泓,白清昭,张笑薇,等. 鄂尔多斯聚煤盆地的形成及构造环境[J]. 煤田地质与勘探,1995,23(3):1–9.

ZHANG Hong,BAI Qingzhao,ZHANG Xiaowei,et al. Formation of the Ordos Basin and its coal-forming tectonic environment[J]. Coal Geology & Exploration,1995,23(3):1–9.

[3] 缪协兴,王长申,白海波. 神东矿区煤矿水害类型及水文地质特征分析[J]. 采矿与安全工程学报,2010,27(3):285–291.

MIAO Xiexing,WANG Changshen,BAI Haibo. Hydrogeologic characteristics of mine water hazards in Shendong mining area[J]. Journal of Mining & Safety Engineering,2010,27(3):285–291.

[4] 顾大钊. 晋陕蒙接壤区大型煤炭基地地下水保护利用与生态修复[M]. 北京:科学出版社,2015.

GU Dazhao. Groundwater protection,utilization and ecological restoration of large coal base in the contiguous area of Shanxi,Shaanxi and Inner Mongolia[M]. Beijing:Science Press,2015.

[5] 杨建,梁向阳,丁湘. 蒙陕接壤区深埋煤层开发过程中矿井涌水量变化特征[J]. 煤田地质与勘探,2017,45(4):97–101.

YANG Jian,LIANG Xiangyang,DING Xiang. Variation characteristics of mine inflow during mining of deep buried coal seams in Shaanxi and Inner Mongolia contiguous area[J]. Coal Geology & Exploration,2017,45(4):97–101.

[6] 李东,刘生优,张光德,等. 鄂尔多斯盆地北部典型顶板水害特征及其防治技术[J]. 煤炭学报,2017,42(12):3249–3254.

LI Dong,LIU Shengyou,ZHANG Guangde,et al. Typical roof water disasters and its prevention & control technology in the north of Ordos Basin[J]. Journal of China Coal Society,2017,42(12):3249–3254.

[7] 刘洋,张幼振. 浅埋煤层工作面涌水量预测方法研究[J]. 采矿与安全工程学报,2010,27(1):116–120.

LIU Yang,ZHANG Youzhen. Forecast method for water inflow from working face in shallowly buried coal seam[J]. Journal of Mining & Safety Engineering,2010,27(1):116–120.

[8] 国家安全生产监督管理总局. 煤矿安全规程[M]. 北京:煤炭工业出版社,2011.

State Administration of Work Safety. Safety regulations in coal mine[M]. Beijing:China Coal Industry Publishing House,2011.

[9] 虎维岳,闫丽. 对矿井涌水量预测问题的分析与思考[J]. 煤炭科学技术,2016,44(1):13–18.

HU Weiyue,YAN Li. Analysis and consideration on prediction problems of mine water inflow volume[J]. Coal Science and Technology,2016,44(1):13–18.

[10] 周振方,靳德武,虎维岳,等. 煤矿工作面推采采空区涌水双指数动态衰减动力学研究[J]. 煤炭学报,2018,43(9):2587–2594.

ZHOU Zhenfang,JIN Dewu,HU Weiyue,et al. Double-exponential variation law of water-inflow from roof aquifer in goaf of working face with mining process[J]. Journal of China Coal Society,2018,43(9):2587–2594.

[11] 刘洋,王振荣,牛建立. 工作面涌水量预测方法的确定[J]. 矿业安全与环保,2010,37(5):29–30.

LIU Yang,WANG Zhenrong,NIU Jianli. Determination of prediction method of water inflow in working face[J]. Mining Safety & Environmental Protection,2010,37(5):29–30.

[12] 李永涛,杨建. 基于顶板水预疏放的首采工作面涌水规律[J]. 煤田地质与勘探,2019,47(4):104–109.

LI Yongtao,YANG Jian. Water inflow law of the first working face based on water pre-draining from roof[J]. Coal Geology & Exploration,2019,47(4):104–109.

[13] 施龙青,王雅茹,邱梅,等. 时间序列模型在工作面涌水量预测中的应用[J]. 煤田地质与勘探,2020,48(3):108–115.

SHI Longqing,WANG Yaru,QIU Mei,et al. Application of time series model in water inflow prediction of working face[J]. Coal Geology & Exploration,2020,48(3):108–115.

[14] 梁积伟. 鄂尔多斯盆地侏罗系沉积体系和层序地层学研究[D]. 西安:西北大学,2007.

LIANG Jiwei. Research on sedimentary system and squence stratigraphy of the Jurassic in Ordos Basin[D]. Xi’an:Northwest University,2007.

[15] 赵俊峰. 鄂尔多斯盆地直罗–安定期原盆恢复[D]. 西安:西北大学,2007.

ZHAO Junfeng. Restoration of the primary Ordos Basin in Zhiluo-Anding Period[D]. Xi’an:Northwest University,2007.

[16] 李向平,陈刚,章辉若,等. 鄂尔多斯盆地中生代构造事件及其沉积响应特点[J]. 西安石油大学学报(自然科学版),2006,21(3):1–4.

LI Xiangping,CHEN Gang,ZHANG Huiruo,et al. Mesozoic tectonic events in Ordos Basin and their sedimentary responses[J]. Journal of Xi’an Shiyou University(Natural Science Edition),2006,21(3):1–4.

[17] 梁向阳,杨建,曹志国. 呼吉尔特矿区矿井涌水特征及其沉积控制[J]. 煤田地质与勘探,2020,48(1):138–144.

LIANG Xiangyang,YANG Jian,CAO Zhiguo. Characteristics and sedimental control of mine water outflow in Hujirt mining area[J]. Coal Geology & Exploration,2020,48(1):138–144.

[18] 杨建,刘洋,刘基. 基于沉积控水的鄂尔多斯盆地侏罗纪煤田防治水关键层研究[J]. 煤矿安全,2018,49(4):34–37.

YANG Jian,LIU Yang,LIU Ji. Study on key layer of water prevention and control in Ordos Basin Jurassic Coalfield based on sedimentary water control theory[J]. Safety in Coal Mines,2018,49(4):34–37.

[19] 武强,徐华,赵颖旺,等. 基于“三图法”煤层顶板突水动态可视化预测[J]. 煤炭学报,2016,41(12):2968–2974.

WU Qiang,XU Hua,ZHAO Yingwang,et al. Dynamic visualization and prediction for water bursting on coal roof based on“three maps method”[J]. Journal of China Coal Society,2016,41(12):2968–2974.

[20] 侯光才. 鄂尔多斯白垩系盆地地下水系统及其水循环模式研究[D]. 长春:吉林大学,2008.

HOU Guangcai. Groundwater system and water circulation pattern in Ordos Cretaceous groundwater basin[D]. Changchun:Jilin University,2008.

[21] 唐克旺,王浩,刘畅. 陕北红碱淖湖泊变化和生态需水初步研究[J]. 自然资源学报,2003,18(3):304–309.

TANG Kewang,WANG Hao,LIU Chang. Preliminary study of Hongjiannao Lake’s variation and ecological water demand[J]. Journal of Natural Resources,2003,18(3):304–309.

[22] 杨建,刘基,靳德武,等. 有机–无机联合矿井突水水源判别方法[J]. 煤炭学报,2018,43(10):2886–2894.

YANG Jian,LIU Ji,JIN Dewu,et al. Method of determining mine water inrush source based on combination of organic-inorganic water chemistry[J]. Journal of China Coal Society,2018,43(10):2886–2894.

[23] 贺勤,刘正奇. 毛乌素沙漠–世界沙漠暴雨中心[J]. 内蒙古气象,1996(3):5–15.

HE Qin,LIU Zhengqi. Mu Us Desert:The world desert rainstorm center[J]. Meteorology Journal of Inner Mongolia,1996(3):5–15.

[24] 薛禹群,吴吉春. 地下水动力学[M]. 北京:地质出版社,2010.

XUE Yuqun,WU Jichun. Groundwater dynamics[M]. Beijing:Geological Publishing House,2010.

Water inflow forecasting method of deep buried coal working face in northern Ordos Basin, China

YANG Jian1,2, WANG Hao1,2, LIANG Xiangyang1,2, HUANG Hao1,2

(1. Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China; 2. Shaanxi Key Laboratory of Preventing and Controlling for Coal Mine Water Hazard, Xi’an 710077, China)

The Mesozoic strata are mainly fluvial deposits in the Jurassic deep buried area of northern Ordos Basin, which are characterized by multi-cycle evolution in stages, resulting in alternate distribution of the aquifer-bearing seams on the coal seam roof. As the surface is mostly covered by Mu Us Desert, the rainfall infiltration recharge coefficient is large, and the water storage capacity of Quaternary loosen stratum is strong. The sufficient water-filling recharge source causes the water-rich aquifers on the roof of coal seams, among which the main water-filled aquifer is Qilizhen sandstone aquifer. In this study, Qilizhen sandstone aquifer is taken as the key layer, and generalized as a direct water-filled aquifer. When the water level in a confined well is lower than the roof of the aquifer, there would be no pressure flow zone in the aquifer near the well, forming a confined-phreatic well. Segmentation method is used to calculate the flow to well, including non-pressurized and confined water areas. However, in mining process of the working face, the water level in the well has been reduced to the floor of the coal seam. The traditional formula of confined- phreatic wells is based on the assumption that the diameter of wells is small(<1 m). In mining process of the working face, with the destruction of the key water-filled aquifer(Qilizhen sandstone aquifer) by the water-conducting fracture zone of overburden, a huge drainage well is formed on the roof of the whole coal seam(102-103m). As the radius of the well increases with the goaf, the traditional formula is inapplicable. Based on the confined-phreatic well formula in, combined with the evolution process of the drain wells in the goaf during deep coal mining in northern Ordos Basin, a confined-phreatic well formula suitable for drain wells under mining disturbance in deep buried areas is established. Taking the first mining face of Hulusu Coal Mine as the research object, this paper uses the relevant hydrogeological parameters obtained from geological exploration and underground exposure to calculate the water inflow. The calculation results show that in the initial stage of working face mining, the actual water inflow is relatively small as the water flowing fracture zone has not communicated with Qilizhen sandstone aquifer due to the insufficient development of the zone. In the middle and later stage, the water flowing fracture zone develops to Qilizhen sandstone aquifer, and the calculated water inflow is close to the actual value, which proves that the formula for calculating the water inflow at the working face of deep-buried coal can accurately predict the water inflow in the mining process of the working face in the study area. The formula established in this study is applicable to the roof water hazard areas of Jurassic Coalfields in Western China, and provides scientific basis for water hazard prevention and control for safe mining of coal resources in deep-buried coalfields.

formula for calculating water inflow in deep buried working face; giant drainage well; interbed structure of sandstone and mudstone; radius of influence; northern Ordos Basin

TD742+.1

A

1001-1986(2021)04-0185-07

2020-12-11;

2021-04-30

国家自然科学基金项目(41302214);中煤科工集团西安研究院有限公司科技创新基金面上项目(2018XAYMS03)

杨建,1979年生,男,江苏盐城人,博士/博士后,研究员,从事煤矿防治水研究. E-mail:yangjian@cctegxian.com

杨建,王皓,梁向阳,等. 鄂尔多斯盆地北部深埋煤层工作面涌水量预测方法[J]. 煤田地质与勘探,2021,49(4):185–191. doi: 10.3969/j.issn.1001-1986.2021.04.022

YANG Jian,WANG Hao,LIANG Xiangyang,et al. Water inflow forecasting method of deep buried coal working face in northern Ordos Basin, China[J]. Coal Geology & Exploration,2021,49(4):185–191. doi: 10.3969/j. issn.1001-1986.2021.04.022

(责任编辑 周建军)

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!