时间:2024-07-28
王 倩,苗德华,邓三鹏,蒋永翔,祁宇明
(天津职业技术师范大学机电工程研究所,天津300222)
随着机动车保有量的大幅增加以及道路通车里程的逐年增长,大量交通事故的发生给世界各国带来了巨大的财产损失及人员伤亡[1],疲劳驾驶是引发交通事故的重要原因之一.目前,越来越多的专家学者致力于驾驶员疲劳监测方法的研究,陆续提出了基于D-S证据理论的驾驶员疲劳决策方法[2],基于马氏距离的汽车驾驶员疲劳检测方法[3]和基于多信号源的驾驶员疲劳监测方法[4]等.研究表明,利用多源信息融合的方法来实现疲劳监测,提高了疲劳监测的准确性,但在疲劳特征提取过程中存在相同或相似的判定属性,出现冗余信息,计算复杂.研究能够准确识别疲劳状态、高效的监测方法对减少疲劳驾驶造成的交通事故具有重要意义.
粗糙集作为一种处理含糊性和不确定性信息的新方法,由波兰学者Z Pawlak于20世纪80年代初提出的[5],是一种研究不完整、不确定知识和数据的表达、学习、归纳的理论方法.目前,粗糙集理论已成为信息科学最为活跃的研究领域之一,同时在医学、化学、机械、地理学、管理科学和材料学等其他学科得到了广泛的应用[6].
知识约简(reduction)是粗糙集理论的核心内容之一.知识库中知识(属性)并不是同等重要的,甚至其中某些知识是冗余的.所谓知识约简,就是在保持知识库分类能力不变的条件下,删除其中不相关或不重要的知识.
设S=(U,A,V,f)是一个决策表,其中 U={x1,x2,…,xn},A=C∪D,C∩D= φ,C={c1,c2,…,cm}称为条件属性集,D={d}称为决策属性集.a(x)是记录x在属性a上的值,即a(x)=f(x,a),Cij表示S的区分矩阵的第i行第j列的元素,其中i,j=1,…,n .区分矩阵的定义为[7]
由于区分矩阵是以主对角线为对称轴的对称矩阵,所以只考虑其上三角或下三角部分即可(这里只考虑下三角).当两个样本的决策属性取值相同时,它们所对应的区分矩阵元素为0;当两个样本的决策属性不同且可以通过某些条件属性的取值不同加以区分时,它们所对应的区分矩阵元素为这两个样本属性上取值不同的条件属性集合,即可以区分这两个样本的条件属性集合;当两个样本发生冲突时,即所有的条件属性取值相同而决策属性的取值不同时,它们所对应的区分矩阵的元素为1.区分矩阵元素中是否包含1,可以作为判定决策表是否包含不一致信息的依据,即不相容决策表的依据.
由区分矩阵的定义可知,Cij是区分样本的所有属性的集合,若 Cij={a1,a2,…,ak}≠0或1,则指定一个布尔函数a1∨a2∨…ak,用∑Cij来表示;若Cij=0或1,则指定Cij为布尔常量1.区分函数△可定义如下
区分函数Δ的极小析取范式中的所有合取式是属性集A的所有约简,即约简是满足能区分由整个属性集区别的所有对象的属性极小值.
利用粗糙集模型来提取监测驾驶员疲劳状态的最有效生理特征,具体过程如图1所示.
图1 基于粗糙集的驾驶员疲劳特征提取框图
在室内模拟驾驶环境中,利用脑电测量仪、脉搏传感器、心率传感器和呼吸传感器,获取20名年龄在20到50岁之间的被测者在清醒和疲劳状态下的脑电波、心率、脉搏、眨眼频率和呼吸次数.同时用摄像机对被测者进行全程实时录像,根据测试者进入状态的程度仅有14人进入了预设状态,所以只选用14人的不同状态各30分钟的脑电波、心率、脉搏、眨眼频率和呼吸次数,将上述数据分别进行小波基线纠漂及降噪处理.以3分钟为单位时间,取每单位时间的脑电α波绝对均值,心率均值,脉搏幅值峰值,脉搏主频,眨眼频率和呼吸次数作为疲劳敏感特征.截取脑电波、心率、脉搏各单位时间典型特征对比图如图2、3、4所示.
图4 驾驶员清醒与疲劳脉搏波对比图
通过实验结果可看出:驾驶员在清醒和疲劳时的脑电信号有明显变化;疲劳前后脉搏波的波幅、频率等多项指标亦有明显的变化;疲劳状态心率均值为71.2次/分,清醒心率均值为89.66次/分.监测结果与被测者实际清醒与疲劳情况相符,说明了应用脑电、脉搏、心率、眨眼频率和呼吸次数的监测分析驾驶员疲劳程度具有一定的可行性.然而,具有决策作用的生理特征信号并不能确定,有可能存在具有相似特征的生理信号,为了进行传感器的优化及准确识别疲劳状态,将用粗糙集理论来判定具备决策作用的生理特征信号.
根据某人在实验室模拟驾驶状态下采集的有关疲劳的生理信号,应用粗糙集(Rough Set)理论对汽车驾驶员疲劳驾驶监测过程所采集的相关人体生理信号进行约简,实验数据如表1所示.
表1 生理信号数据表
表中,对应决策属性G如下:1表示清醒;2表示轻度疲劳;3表示重度疲劳.对条件属性集A,B,C,D,E,F的内容属性定义如下:A-脑电α波绝对均值,μv;B-心率均值,次/分;C-脉搏幅值峰值,mV;D-脉搏主频,Hz;E-眨眼频率,Hz;F-呼吸次数,次/分.
粗糙集方法的知识约简是建立在离散数据基础之上的,因此,首先需要将连续属性值进行离散化处理.连续属性值的离散化,根据正常状态下的平均数值给出相应的区分,对表1建立离散化规则如表2所示.
表2 离散化规则表
通过表2对表1建立离散化处理,对重复数据进行合并,处理结果如表3所示.根据公式(1)对表3建立区分矩阵如表4所示.
表3 驾驶员疲劳监测数据的离散化
表4 驾驶员疲劳状态评估区分矩阵表
根据公式(2),上述区分矩阵的区分函数为
通过计算,这个决策表得到了两个约简 {A,D}和 {A,B,C},其核为 {A}.由以上结果可以得到最佳属性约简为 {A,D},核属性为 {A}.即监测人体疲劳的多源信息生理特征可以约简为脑电α波和脉搏主频,或者脑电α波、心率均值和脉搏幅值,其中,脑电α波具有决策性质.脑电信号可以作为评价人体疲劳与否的标准,在多源信号采集的过程中可以忽略的不是决策属性的生理信号.
1)利用粗糙集理论获取驾驶员疲劳监测的属性约简方法,避免了多源信号属性值的重复提取.
2)通过粗糙集理论的知识约简,提取出了能够真实反映人体疲劳的生理特征,降低了非决策性信号的采集给疲劳监测带来的不准确性.
3)验证了脑电信号可以作为评价人体疲劳的标准,对准确监测驾驶员疲劳提供了理论依据.
[1] 李都厚.疲劳驾驶与交通事故关系[J].交通运输工程学报,2010,10(2):104-106.
[2] 邓三鹏,杨雪翠,苗德华等.基于D-S证据理论的驾驶员疲劳监测方法研究[J].车辆与动力技术,2010(2):28-31.
[3] QI Yuming,DENG Sanpeng,WANG Qian.Research on the detection method of driver fatigue based on Mahalanobis Distance[C] .2010 The 3rd International Conference on Computional Intelligence and Industrial Application.2010(IX):77-80.
[4] MIAO Dehua,WANG Qian,DENG Sanpeng.Experimental Study on the Driver Fatigue Monitoring Based on Multiple Sources[C] .2010 The 3rd International Conference on Computational Intelligence and Industrial Application.2010(VIII):434-437.
[5] PAWLAK Z.Rough sets[J].Information and Computer Science,1982,11(5):341-356.
[6] Francis E H,Taya,Shen Lixiang.Fault diagnosis based on Rough Set Theory[J].Engineering Applications of Artificial Intelligence,2003,16(1):39-43.
[7] Frank Witlox,Hans Tindemans.The application of rough sets analysis in activity-based Modeling Opportunities and constraints[J].Expert Systems with Applications,2004,27(4):585-592.
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!