当前位置:首页 期刊杂志

缬沙坦对糖尿病大鼠肾脏中内质网应激及炎症反应的抑制作用

时间:2024-07-28

陈凯,张承英,,李建民,张建荣

(1. 安徽医科大学武警总医院临床学院,合肥 230032;2. 中国人民武装警察部队总医院,北京 100039;

3. 北京市中西医结合医院,北京 100039)



缬沙坦对糖尿病大鼠肾脏中内质网应激及炎症反应的抑制作用

陈凯1,张承英1,2,李建民3,张建荣2

(1. 安徽医科大学武警总医院临床学院,合肥230032;2. 中国人民武装警察部队总医院,北京100039;

3. 北京市中西医结合医院,北京100039)

【摘要】目的探讨内质网应激(endoplasmic reticulum stress, ERS)及相关炎症反应在糖尿病大鼠肾脏损害中的作用及血管紧张素II受体拮抗剂缬沙坦对其的影响。 方法采用腹腔注射链脲佐菌素方法建立糖尿病肾病大鼠模型。将大鼠随机分为对照组(Con组)、糖尿病组(DM组)、缬沙坦组(DM+V组)。缬沙坦组每日灌胃给予缬沙坦(10 mg/kg)共6周。应用免疫组化法及Western blot方法检测ERS相关蛋白P-IRE1α、P-JNK及中性粒细胞趋化因子MCP-1的表达及定位,实时荧光定量PCR(FQ-PCR)检测IRE1α、JNK及MCP-1mRNA的表达变化,同时观察各组大鼠尿蛋白、BUN、Scr等指标的变化。 结果 与Con组相比,DM组大鼠肾脏病理炎细胞浸润加重,P-IRE1α、IRE1α、P-JNK、MCP-1蛋白表达上调,IRE1α mRNA、MCP-1mRNA表达水平上调;与DM组相比,DM+V组肾脏病理炎症细胞浸润减轻,P-IRE1α、IRE1α、P-JNK、MCP-1蛋白表达下调,IRE1α mRNA、MCP-1 mRNA表达水平下调。3组间JNK mRNA及蛋白表达无明显差异。 结论 糖尿病大鼠肾脏中存在内质网应激和炎症反应的激活,缬沙坦可能部分通过抑制内质网应激中的IRE1/JNK/MCP-1通路,减少炎症反应,从而发挥肾脏保护作用。

【关键词】内质网应激;炎症反应;糖尿病肾病;缬沙坦

糖尿病肾病(diabetic nephropathy,DN)是糖尿病的微血管并发症,也是导致终末期肾病(end-stage renal disease, ESRD)最常见的基础疾病之一。其发病机制复杂,近年来,代谢性炎症与糖尿病肾病的关系越来越受到重视。目前,以缬沙坦为代表的血管紧张素II受体拮抗剂(angiotension Ⅱ receptor blocker,ARB)在DN尤其是早期DN治疗中的作用不断被证实,研究表明,缬沙坦具有降低CRP、IL- 6 等炎症因子的作用[1],然而其作用机制尚未完全明了。本文从内质网应激(endoplasmic reticulum stress,ERS)的角度,研究观察缬沙坦对早期糖尿病大鼠肾脏内质网应激相关蛋白IRE1α、JNK及其下游炎症因子中性粒细胞趋化因子MCP-1表达的影响,探讨其抑制炎症反应的相关机制。

1材料与方法

1.1材料

1.1.1实验试剂

链脲佐菌素(streptozotocin,STZ)购于Sigma 公司。缬沙坦由北京诺华制药有限公司提供。兔抗鼠IRE1α抗体,兔抗鼠P-IRE1α,兔抗鼠JNK,兔抗鼠P-JNK抗体均购于美国Santa Cruz公司,兔抗鼠MCP-1抗体购于北京博奥森公司,小鼠抗GAPDH单抗,羊抗兔二抗及羊抗小鼠二抗购于北京中杉金桥公司。PCR试剂盒为北京天根生化科技有限公司产品。

1.1.2实验动物

SPF级SD雄性大鼠,体重190~210 g,购自北京维通利华实验动物有限公司【SCXK(京)2011-0011】,饲养于北京中医药大学东直门医院屏障环境动物室【SYXK(京)2009-0028】。

1.2方法

1.2.1模型制备及分组

34只SD雄性大鼠,随机分为对照组(Con组,n=10只)、模型组(DM组,n=12只)、缬沙坦治疗组(DM+V组,n=12只)。大鼠适应性喂养一周后,DM组、DM+V组大鼠腹腔注射STZ(STZ 溶于10 mmol/L 的柠檬酸盐溶液,pH 4.5,40 mg/kg)制作糖尿病模型,Con组只注射相同体积的枸橼酸钠缓冲液,2 d后尾静脉采血,测定血糖≥16.7 mmol/L,尿糖+++~尿糖++++者确定为糖尿病大鼠。对照组血糖4~6 mmol/L 左右。所有大鼠试验期间不用外源性胰岛素,避免胰岛素干扰实验过程。DM+V组每天用缬沙坦灌胃6周(10 mg/kg),Con组及DM组只灌等量蒸馏水。实验期间动物自由进食,整个实验过程中DM、DM+V组各有1只大鼠死亡,各有1只大鼠血糖未达到模型标准,予以剔除。最终共30只完成实验,其中C组10 只,DM组10 只,DM+V组10只。在给药6周处死大鼠,处死前用代谢笼收集24 h尿, 用于测定24 h尿蛋白定量;下腔静脉取血3 mL,用于测定血肌酐、血尿素氮、血浆白蛋白、血糖水平;留取双侧肾脏,称重,部分肾组织以10%中性福尔马林溶液固定,其余组织置于-72℃冰箱中冻存。

1.2.2肾脏病理学检查

观察肾组织石蜡包埋后制成2 μm切片,常规HE染色,光镜下观察肾组织形态学改变及炎细胞浸润情况。

1.2.3免疫组织化学检测

采用SP 法。2 μm 肾组织切片,常规脱蜡至水,3% H2O2处理清除内源性过氧化物酶,抗原热修复。正常山羊血清封闭。一抗 P-IRE1α、IRE1α、P-JNK、JNK( 1∶100) 稀释,二抗为生物素化山羊抗兔IgG,PBS 替代一抗作为阴性对照,DAB 显微镜控制下显色,苏木素复染。

1.2.4Westen blot检测蛋白表达

取肾皮质组织100 mg 左右, 用眼科剪剪碎, 加入RIPA 裂解缓冲液, 在玻璃研磨器中研磨, 冰浴1 h, 4℃、14000 r/min离心25 min, BCA法测定上清液蛋白浓度。取总蛋白50 μg, 十二烷基硫酸钠- 聚丙烯酰胺( SDS- PAGE)凝胶电泳后电转移至NC膜; 5%脱脂奶粉封闭NC膜2 h,洗膜后分别加入兔抗大鼠P-IRE1α抗体(1∶400),兔抗大鼠IRE1α抗体(1∶500)、兔抗大鼠P-JNK抗体(1∶200)、兔抗大鼠JNK抗体(1∶250),小鼠抗大鼠GAPDH抗体(1∶3000),4℃过夜, 洗膜后加辣根过氧化物酶标记的羊抗兔抗体(1∶8000)或羊抗鼠抗体(1∶5000), 37℃孵育2 h; 洗膜后加ECL试剂, 然后将NC膜放入X光片暗盒, 压片, 显影, 定影。用ImageJ分析系统软件对Western条带进行定量分析, 确定杂交条带的吸光度值。

1.2.5实时荧光定量PCR(FQ-PCR)检测mRNA表达

按照Trizol 试剂盒说明书提取各组大鼠肾组织总RNA,并参照逆转录扩增试剂盒操作程序进行cDNA 合成。采用2-△△CT法进行数据的相对定量分析。扩增条件为: 94℃预变性10 min,活化Tag 酶,94℃ 15 s, 60℃ 60 s,45 个循环结束,每个cDNA 样品在96孔板均设置3个复孔,反应完成后于16℃ 保存,采用GAPDH作为内参照。引物序列为:IRE1α:5’-CTGTGGAGACCCTACGCTAT-3’(上游)与 5’-AGTGGGCGTCAGTTTGCTC-3’(下游);JNK:5’-TGATGACGCCTTACGTGGTA-3’(上游)与 5’-GGCAAACCATTTCTCCCATA-3’(下游);MCP-1:5’-ACCTGCTGCTACTCATTCA-3’(上游)与 5’-GCTGCTGGTGATTCTCTTG-3’(下游);GAPDH:5’-TCAAGAAGGTGGTGAAGCAG-3’(上游)与 5’-AGGTGGAAGAATGGGAGTTG-3’(下游)。

1.2.6统计学分析

2结果

2.1各组大鼠24 h蛋白定量、血浆白蛋白、血糖、尿素氮和血肌酐的比较

6周末,与Con组相比,DM组大鼠24 h尿蛋白定量、血尿素氮显著增高(P<0.01)、血肌酐增高(P<0.05),血浆白蛋白降低(P<0.05)。与DM组相比,DM+V组大鼠24 h 尿蛋白定量、尿素氮降低(P<0.01,P<0.05),血浆白蛋白增高(P<0.05),血肌酐降低,但差异无统计学意义(P>0.05)(见表1)。

Tab.1The 24 h urinary protein excretion, plasma albumin, serum glucose, BUN and Scr in each group

组别ProAlBGluBUNScrGroupsmg/24hg/Lmmol/Lmmol/Lμmol/LCon组12.64±2.0329.21±1.709.16±1.667.01±0.5520.06±3.11DM组36.46±7.34**23.91±1.46*26.35±5.32**15.60±2.43**29.50±6.42*DM+V组25.23±3.75##28.05±1.79#24.68±4.47**10.33±1.73#25.92±4.25

注:与Con组相比,*P<0.05,**P<0.01;与DM组相比,#P<0.05,# #P<0.01

Note.*P<0.05**P<0.01 vs. control group;#P<0.05,# #P<0.01 vs. DM group.

2.2各组大鼠肾脏组织病理学改变

光镜下Con组肾组织未见明显病理改变,DM组大鼠肾小球明显肥大,肾小球细胞外基质略增生,毛细血管袢明显扩张,系膜基质明显增多、基底膜增厚且系膜间隙增宽,肾小管上皮空泡变性伴部分小灶状萎缩,间质轻度水肿。DM+V组与DM组相比病变明显减轻。(见图1)。

2.3免疫组织化学检测 P-IRE1α、P-JNK、MCP-1蛋白在肾脏的定位表达

P-IRE1α、P-JNK、MCP-1在Con组大鼠肾皮质均有表达,阳性细胞为细胞核呈棕黄色,在100 倍视野中连续不重叠的计数100 个肾小管的细胞总数和阳性细胞数及50 个肾小球的阳性细胞数,以肾小管细胞的阳性率和单个肾小球切面的阳性细胞数作为比较指标。P-IRE1α在Con组弱表达,主要位于远端小管和集合管上皮细胞胞质及胞核内;DM组表达明显增多,肾小球及肾小管胞质胞核均明显表达。P-JNK在Con组弱表达,主要位于近端及远端肾小管上皮细胞胞质内;DM组表达明显增多,主要位于肾小球系膜细胞及肾小管上皮细胞内,以肾小管上皮细胞表达明显,部分上皮细胞肾小球呈强阳性。MCP-1在Con组表达极弱; DM组表达明显增强,尤以远曲小管胞质最为明显,部分肾小球内细胞胞质也呈强阳性表达。DM+V组P-IRE1α、P-JNK、MCP-1表达部位与DM组大致相同,程度介于Con组、DM组之间(见图2)。

注: A为Con组,肾组织未见明显病理改变;B为DM组,肾小球明显肥大,肾小球系膜细胞轻度增生,肾小管上皮细胞肿胀,可见空泡变性;C为DM+V组,肾小球及肾小管病变相对于DM组明显减轻。  图1 各组大鼠肾脏皮质HE染色(×100) Note: A:Representative photomicrograph showing normal kidney tissues in a control mouse;B:Glomerular hypertrophy, mesangial cell mild hyperplasia, renal tubular epithelial cell swelling with visible vacuoles degeneration in a rat of the DM group;C:DM+V group. Compared with the DM group, lesions of glomeruli and renal tubules were alleviated significantly.  Fig.1 Histology of the renal cortex (HE staining,×100)

注:A1-A3为Con组;B1-B3为DM组;C1-C3为DM+V组;A1-C1为P-IRE1α免疫组化染色;A2-C2为P-JNK免疫组化染色;A3-C3为MCP-1免疫组化染色;图中红色箭头指示肾小球目标蛋白阳性表达,黑色箭头指示肾小管目标蛋白阳性表达。  图2 各组大鼠肾皮质免疫组化P-IRE1α、P-JNK及MCP-1蛋白表达变化(×100)Note. A1-A3.Con group;B1-B3.DM group;C1-C3.DM + V group;A1-C1. Comparison of immunohistochemical staining of P-IRE1α in different groups;A2-C2. Comparison of immunohistochemical staining of P-JNK in different groups;A3-C3. Comparison of immunohistochemical staining for MCP-1 in different groups;Red arrow point to target protein expressed in glomerulus positively, black arrow point to target protein expressed in renal tubule positively.   Fig.2 Immunohistochemical staining of P-IRE1α,P-JNK and MCP-1 protein in the rat renal cortex at week 6(×100)

2.4Western blot检测IRE1α、P-IRE1α、P-JNK、JNK、MCP-1蛋白表达情况

JNK表达在各组均无明显差异。与Con组相比,DM组IRE1α、P-IRE1α、P-JNK、MCP-1表达增高(P<0.01)。与DM组相比,DM+V组IRE1α、P-IRE1α、P-JNK、MCP-1表达降低(P<0.01)(见图3)。

注:与Con组相比,** P<0.01;与DM组相比,##P<0.01  图3 6周末各组大鼠肾脏皮质中P-IRE1α、IRE1α、P-JNK、JNK、MCP-1的表达 Note. ** P<0.01 vs. Con group;##P<0.01 vs. DM group.  Fig.3 Expression of P-IRE1α, IRE1α, P-JNK, JNK and MCP-1 proteins in the rat renal cortex at week 6 assayed by Western blot analysis.

2.5FQ - PCR法检测肾组织mRNA 的表达情况

6周末,Con组大鼠肾组织IRE1α、JNK、MCP-1mRNA 仅有微量表达。与Con组比较,DM组IRE1α、MCP-1 mRNA表达明显增高,差异有统计学意义(P<0.01),JNK mRNA表达亦有增高,差异无统计学意义(P>0.05); 与DM组相比,DM+V组IRE1α、MCP-1mRNA表达量明显降低(P<0.01,P<0.05), JNK mRNA表达差异无统计学意义(P>0.05)(见图4)。

注:与Con组相比,** P<0.01;与DM组相比,##P<0.01,#P<0.05。  图4 各组大鼠肾组织IRE1α、JNK和MCP-1mRNA的表达变化Note. ** P<0.01 vs. Con group;##P<0.01, #P<0.05 vs. DM group.  Fig.4 FQ-PCR results of IRE1α, JNK and MCP-1 of the renal cortex in each group

3讨论

糖尿病肾病的发病机制除蛋白激酶C(PKC)学说、氧化应激(ROS)学说、细胞因子学说及遗传分子学说外[2],炎症学说目前倍受关注。微炎症反应和随后的细胞外基质扩张是上述机制在糖尿病肾病中进展的共同途径,炎症通路在糖尿病肾病的进展中发挥着核心作用[3]。

湖南省在治理“新官不理旧事”方面,拿出了很多力度颇大的措施,起到的效果也很明显,这从湖南省从严治党、依法治理方面就可见一斑。比如,记者近日在湖南省高级人民法院采访,就了解到了一起“以新官不理旧事为由拒付货款,村民起诉获得法院支持”的案例。被告某村委会三年时间里在原告田某(某镇邮电局的一名临聘人员)处订阅报纸,三年共欠原告报刊费1409元,并向原告田某出具了一张条据。后来,该村村委会换届,原告多次找被告某村委会催要此款,被告某村委会却以“新官不理旧事”为由拒付款。原告田某向湘阴县人民法院起诉请求法院判令被告某村委会向原告田某支付货款1409元,湘阴县人民法院一审作出了支持原告诉讼请求的判决。

DM患者肾脏存在局部RAS系统的激活,ANGII生成增多,降解减慢,从而导致肾脏局部ANGII的浓度增加[4]。体外实验已发现,ANGII可诱导肾小管细胞的NF-κB的激活,进而引起炎症反应[5]。Titan SM[6]联合应用ACEI与ARB治疗糖尿病肾病患者,尿MCP-1(中性粒细胞趋化因子1)呈下降趋势。肾脏 MCP-1 的增加是糖尿病肾病患者肾脏损伤的显著特点,是导致单核巨噬细胞浸润肾组织的重要因素[7]。本实验研究中我们也发现,DM组大鼠模型6周时肾组织中的MCP-1表达量增高,同时炎性细胞浸润明显。DM+V组,MCP-1蛋白表达水平下调,同时炎症细胞浸润减轻,并伴有24 h尿蛋白定量降低,提示缬沙坦具有减降低炎症细胞聚集,抑制炎症反应的作用。

然而对于糖尿病肾病中炎症反应发生的原因,目前尚未完全明确。越来越多的研究显示,内质网应激(ERS)与炎症反应关系密切。内质网是多种蛋白的主要合成场所,当各种因素导致内质网稳态被打破,引起的内质网中出现错误折叠及未折叠蛋白在腔内聚集的状态称为内质网应激。适度的ERS可以恢复ER及内环境稳态,保持细胞活性,但当外界刺激因素持续存在时,过强或过长时间的ERS将最终导致细胞的炎症反应及凋亡[8]。肾组织系膜细胞内含有丰富的内质网系统,为ERS的发生提供了结构基础,同时糖尿病肾病患者伴随着高血糖、氧化应激、ANGII等多种破坏内质网稳态的因素[9],提示持续存在的ERS可能参与了DN中炎症反应的发生。本研究检测了ERS相关蛋白IRE1及下游炎症相关转录因子激酶JNK,探讨ANGII受体抑制剂缬沙坦抑制炎症反应,保护肾脏的潜在机制。

IRE-1(肌醇依赖酶1)是定位于内质网膜上介导内质网信号的重要蛋白质分子,与炎症反应的发生密切相关。生理条件下与内质网腔内的蛋白质GRP78结合而处于失活状态;内质网应激发生后,使内质网腔内大量未折叠和/或错误折叠的蛋白质生成增加,可竞争结合GRP78,使其与IRE-1解离,促进IRE-1磷酸化为P-IRE1后活化[10]。本研究发现,DM组大鼠肾脏IRE1α蛋白及核酸表达上调,同时P-IRE1α蛋白量增加,提示DM大鼠肾脏6周时可能已发生ERS,6周时已有明显炎症反应,可能持续存在的ERS促进了炎症反应的发生。Cao等[11]研究发现,在8周时DM大鼠肾脏中存在GRP78 表达的增加,ERS激活,给予氯沙坦治疗后,内质网应激及相关凋亡反应减轻,但未探及对炎症反应的影响。本实验研究表明给予缬沙坦的DM+V组大鼠肾脏IRE1α蛋白及核酸表达下调,P-IRE1α蛋白量减少,炎症反应减轻,提示缬沙坦可能减轻了DM大鼠肾脏中ERS状态,进而减轻了相关的炎症反应。

JNK (c-Jun 氨基端激酶)是负责转录因子 c-Jun 氨基端磷酸化的激酶。经许多生理及病理信号刺激后(如生长因子、环境因素、细胞因子等应激),JNK被激活并转运到细胞核,使核内转录因子 c-Jun 的氨基末端磷酸化,进而激活c-Jun而增强其转录活性。进而引起下游炎症因子(包括MCP-1)的激活[12]。因此,JNK 通路是介导巨噬细胞相关的肾损伤的重要途径。ERS情况下,活化的IRE1α(P-IRE1α)结合TRAF2,募集并磷酸化下游蛋白JNK,促进转录因子 C-Jun的激活,从而编码多种炎症介质的基因表达[13]。本实验研究发现DM组、DM+V组大鼠肾脏JNK蛋白及核酸表达均无明显变化,但是DM组P-JNK蛋白量增加,缬沙坦治疗后DM+V组P-JNK蛋白量减少。提示在DM大鼠肾脏中由于ERS导致的JNK磷酸化的激活占主要作用,JNK蛋白表达并不明显。缬沙坦可能是抑制了ERS,减少了JNK蛋白的磷酸化,进而抑制了炎症反应。

对于ANGII受体抑制剂缬沙坦如何抑制了ERS,其作用机制尚不明确,可能与以下因素有关:①ANGII具有强大的促进细胞增殖和肥大,增加ECM合成的效应[14]。使得蛋白质的大量合成,增加了内质网的蛋白负荷,进而引起ERS;②ANGII可诱导系膜细胞活性氧自由基(Ros)的产生[15],及血管内皮细胞细胞内Ca2+异常升高[16],影响内质网的稳态,引起ERS; AT1受体抑制与其受体结合,减弱了ERS的激活条件。另外,ARB类药物有明显的降低尿蛋白的作用,减少了肾小管上皮细胞对尿蛋白的重吸收,进而减轻肾小管上皮细胞的ERS的激活,最终减轻了ERS相关的炎症反应。

总之,我们的研究发现,糖尿病大鼠肾脏中存在内质网应激和炎症反应的激活,缬沙坦可能部分通过抑制内质网应激中IRE1/JNK/MCP-1通路,减轻炎症反应,从而发挥肾脏保护作用。

参考文献

[1]Ruilope LM, Malacco E, Khder Y, et al. Efficacy and tolerability of combination therapy with valsartan plus hydrochlorothiazide compared with amlodipine monotherapy in hypertensive patients with other cardiovascular risk factors: The VAST study [J]. Clin Ther, 2005, 27(5): 578- 587.

[2]赵大鹏, 隋艳波, 栾中秋, 等. 糖尿病肾病发病机制的研究进展 [J]. 中国医药导报, 2012, 9(36): 47-48.

[3]Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy [J]. Clin Sci (Lond). 2013, 124(3): 139-152

[4]Furukawa M, Gohda T, Tanimoto M, et al. Pathogenesis and novel treatment from the mouse model of type 2 diabetic nephropathy [J]. Sci World J, 2013, 20(13): 917-922.

[5]Fang F, Liu GC, Kim C, et al. Adiponectin attenuates angiotensin II-induced oxidative stress in renal tubular cells through AMPK and cAMP-Epac signal transduction pathways [J]. Am J Physiol Renal Physiol, 2013, 304(11): 1366-1374 .

[6]Titan SMM, Vieira J Jr, Dominguez WV, et al. ACEI and ARB combination therapy in patients with macroalbuminuric diabetic nephropathy and low socioeconomic level: a double-blind randomized clinical trial [J]. Clin Nephrol. 2011, 76(4): 273-283.

[7]Chow FY, Ma FY, Ozols E, et al. Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice [J]. Diabetologia, 2007, 50: 471-480.

[8]Hasnain SZ, Lourie R. The interplay between endoplasmic reticulum stress and inflammation [J]. Immunol Cell Biol, 2012, 90:260-270

[9]Liu G, Sun Y, Li Z, et al. Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease [J]. Biochem Biophys Res Commun, 2008, 370(4): 651-656.

[10] Zhang K, Kaufman RJ. From endoplasmic reticulum stress to the inflammatory response [J]. Nature, 2008, 454(7203): 455-462.

[11]曹延萍, 郝咏梅, 刘青娟, 等. 内质网应激及其特有凋亡途径Caspase-12与糖尿病大鼠肾组织固有细胞凋亡之间的关系. 中国应用生理学杂志, 2011, 27(2):236-240.

[12]Hu E, Mueller E, Oliviero S, et al. Targeted disruption of the c-fos gene demonstrates c-fos-dependent and -independent pathways for gene expression stimulated by growth factors or oncogenes [J]. EMBO J, 1994, 13(13): 3094-3103.

[13]Liu CM, Zheng GH, Ming QL, et al. Protective effect of quercetin on lead-induced oxidative stress and endoplasmic reticulum stress in rat liver via the IRE1 /JNK and PI3K/Akt pathway [J]. Free Radic Res, 2013, 47: 192-201.

[14]Gorin Y, Ricono JM, Wagner B, et al. Angiotensin II-induced ERKl/ERK2 activation and protein synthesis are redox-dependent in glomerular mesangial cells [J]. Biochem J, 2004, 381(Pt 11): 231-239.

[15]Iturralde M, Gamen S, Pardo J, et al. Saturated free fatty acid release and intracellular ceramide generation during apoptosis induction are closely related processes [J].Biochim Biophys Acta, 2003, 16(34): 40-51.

[16]Wang WZ, Pang L, Palade P, et al. Angiotensin lI causes endothelial dependent increase in expression of Ca protein in cultured arteries [J]. Eur Pharmacol, 2008, 599: 117-120.

·国际前沿·

【编者按】本文为丹尼尔整理2014年博士期间工作,发表在《neurobiology of disease》上的研究论文。他结合2014年本刊第6期向读者解读的:神经功能原理模型对研究者的重要指导作用。从自身实际研究的角度,谈了自己选题、设计、实施……的体会。本文有助于读者和研究人员今后的研究实践。

Topicsofinterest- ‘TargetingRegulatorsofG-proteinsignalling(RGS)proteinsinmovementdisorders’

Following on from the last article on the descriptions of the basal ganglia model in movement disorders (3rd edition); this related communication refers to our recently published research (Ko et al., 2014) on the pathophysiological roles of RGS proteins in Parkinson’s disease (PD) and L-DOPA-induced dyskinesia (LID).

Although the cause of LID remains unknown, evidence has suggested that repeated, pulsatile stimulation of the dopamine receptors in the basal ganglia contributes to the development of LID. This process is commonly referred to as ‘priming’ and is the abnormal long-term stimulation of dopamine receptor subtypes, which belong to the well-known class of proteins called G-protein coupled receptors (GPCRs). Ultimately, priming causes abrupt functional changes in second messenger signalling mechanisms (Aubert et al., 2005)that lead to the development and expression of dyskinesia.

In our published paper (Ko et al., 2014), we focused our attention on RGS proteins which are known to modulate GPCRs (Hepler, 1999). Specifically, we investigated the role of RGS protein subtype 4 and its pathophysiological role in the expression of PD and LID motor symptoms. Our experiments utilised the well-established 6-hydroxydopamine (6-OHDA)-lesioned rat model (Cenci et al., 1998) and progressed from a series of in vivo to in vitro explorations, in an attempt to fully characterise the functional changes of RGS4 in PD and LID.

The main findings from our research demonstrated that RGS4 proteins were involved in the expression of LID. This was seen following correlation analyses (r=0.93,P<0.06) of RGS4 mRNA with abnormal involuntary movements (AIMs) in L-DOPA-treated 6-OHDA-lesioned rats. Thereafter, we innovatively suppressed the expression of RGS4 mRNA using antisense oligonucleotides, which were chronically delivered into the brain through osmotic mini-pumps. We found that dampening the expression of RGS4 mRNA was able to reduce the induction of AIMs and the subsequent development of marked molecular changes associated with LID, such as dopamine receptor super-sensitisation.Our key findings indicated that such second messenger signalling proteins may provide for novel therapeutic targets for the treatment of movement disorders and/ or other neurological disorders.

References

Aubert I, Guigoni C, Håkansson K, Li Q, Dovero S, Barthe N, Bioulac BH, Gross CE, Fisone G, Bloch B, Bezard E.Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol. 2005;57(1):17-26.

Cenci MA, Lee CS, Björklund A.L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci. 1998;10(8):2694-2706.

Hepler JR.Emerging roles for RGS proteins in cell signalling.Trends Pharmacol Sci. 1999;20(9):376-382.

Ko WK, Martin-Negrier ML, Bezard E, Crossman AR, Ravenscroft P. RGS4 is involved in the generation of abnormal involuntary movements in the unilateral 6-OHDA-lesioned rat model of Parkinson's disease. Neurobiol Dis. 2014;70: 138-148.

栏目主持:李秦

研究报告

Inhibitory effect of valsartan on endoplasmic reticulum

stress and inflammation in the diabetic rat kidney

CHEN Kai1, ZHANG Cheng-ying1,2, LI Jian-min3, ZHANG Jian-rong2

(1. Anhui Medical University, Hefei 230032, China; 2. the Armed Police General Hospital, Beijing 100039;

3. Beijing Hospital of Chinese Traditional and Western Medicine, Beijing 100039)

【Abstract】ObjectiveTo study the role of endoplasmic reticulum stress and related inflammation in the kidneys of rats with diabetic nephropathy and the effect of valsartan on these lesions. Methods The diabetic rat model was induced by intraperitoneal injection of streptozotocin. Thirty-four healthy male SD rats were randomly divided into normal control group (n=10), diabetic group (n=12), and valsartan group (n=12). Valsartan (10 mg/kg) was administered daily by gavage from the next day of the diabetes induction for 6 weeks. The expression and distribution of ERS-related proteins P-IRE1α, P-JNK, and MCP-1 were examined by immunohistochemistry and Western blot. Real-time fluorescence quantitative PCR was used to detect the mRNA expressions of IRE1α, JNK and MCP-1. The 24-hour urine protein excretion, Scr, and BUN were checked.ResultsCompared with the control group, infiltration of inflammatory cells was aggravated in the kidneys of DM+V group, the expressions of P-IRE1α,IRE1α,P-JNK,MCP-1 were significantly increased, and the levels of IRE1mRNA and MCP-1mRNA increased compared with the DM group, infiltration of inflammation cells was alleviated in the kidney of DM+V group, the protein expressions of P-IRE1α,IRE1α,P-JNK,MCP-1 were significantly reduced, the levels of IRE1mRNA and MCP-1mRNA were reduced. While there was no significant difference in the expression of JNK mRNA and protions among the three groups. ConclusionsERS and related inflammation are activated in the kidney of diabetic rats. Inhibition of the IRE1/JNK/MCP-1 pathway of ERS and related inflammation might be responsible for the protective effects of valsartan on the kidneys of diabetic rats.

【Key words】Endoplasmic reticulum stress; Inflammation; Diabetic nephropathy; Valsartan

[收稿日期]2014-11-19

Doi:10.3969/j.issn.1005-4847.2015.02.006

【中图分类号】Q95-33

【文献标识码】A

【文章编号】1005-4847(2015) 02-0132-06

[通讯作者]张承英,硕士生导师。Email: zhangchy1969@126.com

[作者简介]陈凯(1986-),男,硕士研究生,研究方向:糖尿病肾病的发病机制及治疗。Email: chenk.ly@163.com

[基金项目]国家自然基金面上资助项目(No.81273706)。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!