当前位置:首页 期刊杂志

基于多站位点云数据的大面积甲板平面度计算方法

时间:2024-07-28

雷玉莹

(海军装备部驻上海地区第八军事代表室,上海 200011)

0 引 言

随着舰船的大型化及先进设备、武器装备装舰的要求越来越高,为保障建造环节及服役阶段设备安装、使用的可靠性,近年来对大面积、长距离的平面度控制正成为建造精度控制的发展方向[1]。其中,对大面积区域的平面度评估是一项基础技术,传统的拉线法、水平仪测量法、全站仪测量法等从效率、精度等各方面均难以保证测量结果。由于下料、装配、焊接、搭载等工序的影响,其建造变形的测量非常复杂,且往往伴随着多阶段建造过程,甚至对舰船服役阶段设备的使用和寿命产生影响。特别是对于无梁拱、无支柱的大面积船体主甲板,需要高效、精确的甲板面平面度测量与计算,以对船体建造精度进行有效检测和评估,确保变形矫正的准确性与可靠性。

目前,国内船厂采用的甲板平面度测量方法,通常为拉线法和全站仪单点测量法,其测量效率和测量结果的可靠性不高,测量精度受人为因素影响较大。随着现代造船技术的发展,高精度、高效率的激光测量设备已被造船行业采用,使激光测量技术在造船领域的应用越来越广泛[2-3],其中全站扫描仪已在造船领域进行一定程度的应用。全站扫描仪采用点云扫描测量方式,获取高精度、高密度的点云数据,对于大面积甲板平面度测量具有较好的适用性,国内已有船厂采用全站扫描仪对船体平面度进行检测,取得较好的使用经验和效果。

对于大面积连续甲板面的测量,受限于测量区域的通透性,在单一站位下难以完成所有待测区域的测量,需要将在多站位下测得的点云数据进行拼接,统一坐标系,完成计算评估。其计算方法的准确性直接影响解算精度。基于多站位下全站扫描仪测量甲板平面度获得的点云数据,提出一种平面度高效计算方法。平面度计算方法的具体流程如图1所示。

图1 平面度计算方法流程

1 计算模型

1.1 坐标转换计算

参数坐标转换计算模型[5]为

(1)

式中:[X′Y′Z′]T、[XYZ]为模拟平面上的测点在2套坐标系下的坐标;Rck为坐标系沿Z轴的旋转矩阵。

旋转矩阵Rz为

(2)

残差方程为

V=BdX-L

(3)

X=[ΔXΔYΔZk]T

(4)

式(3)和式(4)中:常用解非线性方程组的方法为高斯-牛顿迭代法,线性化矩阵B和常数项矩阵L的具体计算方法参考文献[5]。设定X的初值并代入计算得到修正值dX,将dX加上X再次代入,循环计算,直到修正值dX小于设定的限差为止。

1.2 最小二乘法拟合平面

假定测量数据的点云中包含n个空间点{(xi,yi,zi):i=1,2,…,n},其中:xi和yi为自变量不包含误差;zi为因变量包含误差。列出方程:

z=f(x,y;p,q,r)=p+qx+ry

(5)

式中:p、q和r为最小二乘法求解过程中需要求解的平面参数。

上文给出函数的表达形式,若自变量包含xi和yi,则zi可表示为p+qxi+ryi,由于测量值为zi,因此偏差在第i次测量中可表示为

ei=f(xi,yi;p,q)-zi

(6)

根据最小二乘原理,p、q和r得到最优估计需要通过最小化方程:

(7)

对E2中每个参数求偏导,若每个参数的偏导数值为零,则得到参数p、q和r的最优解,联立这3个方程可得到矩阵方程:

(8)

通过式(8)可较易求解参数p、q和r,将其转换为标准方程形式ax+by+cz=d,即可得到参数a、b、c和d的值。

1.3 平面度评估计算

平面拟合的最终目的是将空间点数据拟合至平面,计算点至拟合平面的距离。常用的方法是在空间坐标系下逐个计算点至拟合平面的距离,得到平面度计算结果。可将该问题简化,在拟合得到平面后根据平面的法向量(方向余弦),将平面旋转至与空间直角坐标系的O-xy平面平行。这样可简化投影的计算过程,旋转后所有空间点的投影坐标即为x、y坐标。平面拟合的偏差量可通过拟合后法向量角度的偏差量表示,即旋转后的z值。

2 算例分析

为验证计算方法的准确性和可靠性,使用MATLAB编制计算程序。模拟测量空间为2块长宽20 m×30 m的相邻甲板区域,如图2所示。在甲板面宽度方向设定带有一定的弧度,从两边向中间凸起,取值范围为40 mm,中间高于两端,在2个坐标系A站和B站下分别建立2片点云数据,点云数据密度为100测点/m2,均匀分布。在2块甲板面间模拟3个旋转标靶作为公共点,公共点的数值和编号如表1所示,其中:B站为基站。

图2 模拟测量甲板面

表1 A站和B站坐标系公共点数据

表1中的公共点坐标充分模拟实船测量环境,在具有3个公共点的坐标x、y、z方向分别加入均值为0、强度为0.25的高斯噪声Δ~N(0,0.25),采用上述4个参数的坐标转换方法进行求解,可求得坐标转换参数计算结果,如表2所示。

表2 坐标转换参数计算结果

利用完成的坐标转换参数,将2站点云的数据统一至1个坐标系下,即将A站的数据转换至B站下,完成2个测站下的点云数据拼接。通过统一坐标系后的点云数据进行平面度拟合计算,确定拟合平面ax+by+cz=d的平面参数。表3为平面拟合参数计算结果。

表3 平面拟合参数计算结果

采用第1.3节中所述平面度计算方法,将拟合后的平面旋转至Oxy平面,其坐标z值即为平面度数据,结果如图3所示。由图3可知:平面度偏差量最小值为-31 mm,最大值为9 mm。为清晰看出平面度计算结果,选取坐标X=5 000 mm模拟实船某一肋位,截取其平面度数据,如图4所示,其在宽度方向上的平面度曲线与设定结果一致。

图3 平面度仿真计算结果

图4 X=5 000 mm位置(某一肋位)平面度计算结果

3 结 语

基于多站位下的平面点云数据,通过坐标系转换、平面拟合、拟合面旋转等计算方法,求得点云数据的平面度,并通过仿真计算验证计算方法的准确性和有效性,对大面积区域平面度评估的算法问题进行优化。将传统的6个参数的坐标转换算法进行简化,略去2个旋转角度参数,减少冗余计算。通过将拟合平面旋转至Oxy平面,可直接解算平度值,有效提高计算速度,计算方法思路简单清晰,易于程序实现。提到的计算方法可有效计算评估大面积甲板平面度,保证建造质量,供实际工程应用工作中有所借鉴。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!