时间:2024-07-28
杜站宇,赵家平,宋兴超,李雪娇,吴 琼,杨 颖,邢秀梅,徐 超*,张林波
(1.吉林农业大学,长春 130118;2.中国农业科学院特产研究所,农业部特种经济动物遗传育种与繁殖重点实验室,吉林省特种经济动物分子生物学省部共建国家重点实验室,长春 130112;3.长春长生生物科技有限责任公司,长春130103)
黑素小体在黑色素生成过程中的关键作用
杜站宇1,2,赵家平2,宋兴超2,李雪娇3,吴琼2,杨颖2,邢秀梅2,徐超1,2*,张林波1*
(1.吉林农业大学,长春 130118;2.中国农业科学院特产研究所,农业部特种经济动物遗传育种与繁殖重点实验室,吉林省特种经济动物分子生物学省部共建国家重点实验室,长春 130112;3.长春长生生物科技有限责任公司,长春130103)
黑素小体是真核生物细胞中用于合成和沉积黑色素唯一的细胞器,其功能紊乱将导致人类或哺乳动物的色素相关疾病。黑素小体的发生(黑素小体的形成、成熟;前黑素小体纤维的形成;黑素小体相关蛋白的转运)、黑素小体内环境的稳定和黑素小体的转运都是黑色素合成和沉积必不可少的前提条件。本文将对黑素小体在黑色素生成过程中的关键作用进行阐述,以期为哺乳动物黑色素减退机制进一步探索和理解,以及人类白化相关疾病的进一步揭示提供理论参考。
黑素小体;黑素小体的发生;黑素小体内环境;黑色素减退
哺乳动物毛发、皮肤和眼睛中的黑色素是一种复合色素,主要包含黑/棕色的真黑色素和红/黄色的褐黑色素。黑色素不仅仅为哺乳动物的毛发、皮肤和眼睛提供丰富的色彩,也为它们的生存提供一定的保护。哺乳动物黑色素的生物合成发生在表皮细胞、眼黑色素细胞、视网膜色素上皮细胞以及虹膜的黑素小体中,黑色素是在黑素小体产生、聚集并沉积在黑素小体腔内的纤维薄层上[1],黑素小体来源于早期核内体[2-3],在形态和功能上唯一用来合成和存储黑色素的溶酶体类细胞器(Lysosomerelated organelle,LRO)[4],是完整的循环核内体系统[5]。
1.1黑素小体的形成和成熟
根据所包含的黑色素不同,分为真黑素小体和褐黑素小体。真黑素小体(Eumelanosomes)是椭圆形,有明显的蛋白质样纤维基质,是真黑色素在黑素小体成熟早期整齐有序的排列所产生的;而褐黑素小体是圆形,色素表面粗糙,所包含的蛋白多于真黑素小体,无定型的蛋白纤维基质,大多处于运动状态[6-7]。早期的真黑素小体可以在透射电镜下观察到完整的黑色素纤维堆积所产生的条纹,而褐黑素小体可观察到的条纹呈现不完全黑化斑点状[8]。
黑素小体的成熟过程可分为4个阶段,第Ⅰ阶段为前黑素小体,是含有很多膜腔内囊泡(Intralumenal membrane vesicles,ILVs)具有不定形基质的球状细胞器;第Ⅱ阶段,黑素小体伴随着囊泡延长,外部形成纤维状结构,内部产生纤维基质,可检测到淀粉样纤维[9];第Ⅲ阶段,黑色素合成并存储在淀粉样纤维上,导致其变黑增厚;第Ⅳ阶段,黑色素继续在淀粉样纤维上合成和沉积直到充满内部纤维结构[10]。
黑素小体第Ⅰ、Ⅱ阶段,前黑素小体蛋白(Premelanosome protein 17,Pmel17)参与黑素小体纤维的形成,并维持黑素小体内环境的平衡[2-3],以利于第Ⅲ、Ⅳ阶段黑色素的合成和沉积[11-12]。黑素小体第Ⅱ阶段,酪氨酸酶类(Tyrosinase,TYR;tyrosinase-related protein-1,TYRP1;DOPAchrome tautomerase,DCT)在第Ⅱ阶段末期被转运进入黑素小体[13],TYR和TYRP1被溶酶体生物合成相关细胞器复合物(Biogenesis of lysosome related organelle complex,BLOC-1/2/3)或接头蛋白(Adaptor protein,AP-1/3)复合物选择性转运到黑素小体[2]。BLOC-1/2/3、AP-1/3的部分亚基蛋白突变或缺失将导致Hermansky-Pudlak综合征(HPS),呈常染色体隐性遗传,具有明显的遗传异质性,是人类白化病综合征中的一种[14]。当小体内富含片状淀粉样纤维,并不再内吞物质,标志第Ⅱ阶段结束[13]。
黑素小体第Ⅲ阶段,在黑素小体膜上α-促黑素皮质激素(α-melanocortins,α-MSH)与黑皮质素受体1(Melanocortin-1 receptor MC1R)结合后,上调cAMP水平,激活真黑色素的合成,这一过程在各种酶类(TYR、TYRP1、DCT和Pmel17)催化下将酪氨酸转化为多巴醌类,并最终生成真黑色素[15]。若Agouti基因编码的刺豚鼠信号蛋白(Agouti signaling protein,ASIP)高表达,就会与α-MSH竞争性结合MC1R,下调cAMP水平,激活褐黑色素的合成[16]。
1.2Peml17在前黑素小体纤维形成中的作用机制
在黑素小体成熟的过程中,黑素小体纤维的形成需要Pme17的正常转运及解朊[17],Pmel17在第Ⅰ阶段聚集在腔内膜泡(Intralumenal membrane vesicles,ILVs)上,随着ILVs的伸长逐渐形成淀粉样纤维,并使ILVs被推送至细胞器的边缘。在电镜下可观察到椭圆形黑素小体内部具有成片状结构的条纹,这些条纹即是淀粉样纤维聚集在黑素小体腔内所形成的,是黑素小体主要的结构[18]。成熟的Pmel17主要由Mα片段(NTR、PKD、RPT)和Mβ(TM、CTD)片段组成,经前蛋白转化酶(Proprotein convertases,PCs)和β位点裂解酶(Beta-site APP cleaving enzyme,BACE)同族物BACE2水解,Mα和Mβ片段分开,Mα片段进一步重组成淀粉样纤维,Mβ片段在γ分泌酶(γ-secretase)的作用下释放出C末端片段(C-terminal fragment,CTF)[17],详见图1。在小鼠上编码Pmel17蛋白的PMEL基因终止密码子突变可产生银色毛表型[19],鸡PMEL基因p.R618C变突产生红褐色羽毛表型[20],马PMEL基因p.Arg618Cys突变可产生银色被毛表型[21]等。
1.3BLOC和AP复合体转运TYR、TYRP1到达黑素小体及其转运机制
BLOC-1缺陷细胞试验显示,TYRP1不能从核内体转运到黑素小体,大量TYRP1会堆积在核内体液泡和细胞的表面,但TYR的转运不受影响,大部分TYRP1由BLOC-1来转运到达黑素小体[33],而大部分TYR由AP-3转运完成[22-23],且AP-3转运TYR到达黑素小体的过程独立于BLOC-1,详见图2。BLOC-2的缺陷将导致TYRP1的定位错误[14],黑色素细胞中色素减退。BLOC-2作为Rab32和Rab38转运到黑素小体膜上的效应器[24],能稳定转运蛋白并引导转运蛋白与成熟黑素小体发生特异性地相互作用[14]。BLOC-3作为Rab32/38特定的鸟嘌呤核苷酸交换因子,使Rab32/38与GTP结合后被激活参与黑色素合成酶类的转运[25]。Rab32/38缺陷细胞中,TYR和TYRP1从TGN合成后,很快就会被降解掉,而不能到达黑素小体[26],甚至会导致黑素小体内环境紊乱,最终不能产生黑色素[27],因此Rab32/38在黑色素合成过程中也发挥着重要作用。
图1 Pmel17的解朊机制[17]Fig.1 The proteolytic cleavage of Pmel17[17]
图2 黑素小体蛋白的转运[23]Fig.2 The transportation of melanosome proteins[23]
驱动蛋白KIF13A(The kinesin-3 motor)可以促进黑素小体相关蛋白的合成,并在循环核内体的转运作用下最终与黑素小体的融合[28]。AP-1的一端结合在转运中间体上,另一端结合驱动蛋白KIF13A并指导它在细胞外围的循环核内体结构域到黑素小体膜之间构建微管[28],黑色素细胞中AP-1被干扰后,TYRP1被定位错误,黑色素细胞内色素大量减少[29]。BLOC-2指导微管转运中间体特异性与成熟黑素小体相互作用,维系转运中间体的稳定[14]。在BLOC-1的调控作用下,驱动蛋白KIF13A沿着微管稳定迁移,在黑素小体附近释放出包含有黑素小体相关蛋白的循环核内体管,循环核内体管与黑素小体融合,使黑素小体相关蛋白最终到达黑素小体[5]。
2.1OA1基因
OA1基因表达OA1的蛋白主要存在于成熟黑素小体的膜和前黑素小体的内吞溶酶体,是连接细胞内溶酶体和黑素小体的G-蛋白偶联受体(G-protein-coupled receptor,GPCR)[30]。对人皮肤黑色素细胞进行免疫荧光检测显示OA1是带有Gαi亚基的异源三聚体(Gαi1、Gαi2、Gαi3),在黑素小体发育的第Ⅱ阶段,OA1激活Gαi3从而阻止膜泡连续不断地转运到黑素小体。OA1基因突变或Gαi3亚型蛋白未被激活,膜泡在第Ⅲ、Ⅳ阶段持续转运到黑素小体,会使黑素小体变大,表现为小体腔内纤维条纹减少,且黑素色素沉积密集,较正常黑素小体体积大,黑素小体呈球状体[31]。敲除小鼠OA1基因或者抑制Gαi3亚型蛋白表达都表现出视网膜色素上皮细胞黑素小体变大现象[32]。Pmel17的表达受小眼相关转录因子(Microphthalmia-associated transcription factor,Mitf)的调控[33-34],OA1参与了α-MSH-Mitf的信号级联反应,在OA1基因突变后,α-MSH将不能长时间维持MITF的高表达,而Pmel17的表达减少使黑素小体中淀粉样纤维的形成减少[35],才导致黑素小体变大。
2.2OCA2基因
在人类基因组中对应OCA2基因[36](小鼠上Pinkeyeddilute基因)编码的红眼色素稀释蛋白(Pink-eyed dilution protein,P-protein),在黑色素细胞和视网膜色素上皮细胞黑色素生物合成中有着重要作用。在人上,由于HERC2(Hect domain and RCC1-like domain 2)基因存在一个单核苷酸多态性位点(Single-nucleotide polymorphim,SNP)rs12913832:A>G使人的虹膜呈现蓝色,这一位点被证实可以增强OCA2基因的表达[37]。E.coli的研究显示OCA2蛋白有12个跨膜结构域,相当于一个Na+/H+离子泵,泵出H+维持小体内pH在中性范围,使TYR发挥最佳活性从而催化酪氨酸产生真黑色素[38]。OCA2的表达量降低可使黑素小体腔内pH降低,导致TYR活性降低,这可能是黑色素细胞内色素减退的原因[39]。S.Park等[40]通过电镜观察发现,下调OCA2的表达,将导致黑素小体形态、结构、数量以及黑色素含量显著减少。控制黑色素瘤细胞增殖的关键调控因子TBX2(T-box transcription factor 2)同样调控黑色素的生物合成,敲除TBX2将增加OCA2的表达量,且生物合成的黑色素含量增多[41]。
2.3SLC24A5基因和SLC45A2基因
在斑马鱼中首先发现的金色突变基因SLC24A5,可以引起黑色素细胞和视网膜色素上皮细胞的色素减退[42],SLC24A5基因编码位于黑素小体膜上的离子泵,偶联V-ATPase调控黑素小体内的阳离子浓度(Na+、K+、Ca2+和H+)。黑色素瘤基因(Antigen in melanoma,AIM-1,也叫做SLC45A2)编码膜相关转运蛋白(Membrane-associated transporter protein,MATP)[43-44],MATP将H+从黑素小体中泵出去,将Na+泵进来;SLC24A5基因编码的离子泵作用刚好相反,两者共同调节黑素小体内环境的pH[42,45]。敲除MATP不会使黑素小体的形态改变,黑色素合成相关蛋白的表达也不受影响,但会显著降低黑素小体内的pH、TYR活性降低、黑色素含量减少[46]。推测这是由于黑素小体内阳离子的数量是稳定的,MATP转运H+到黑素小体内,Cu2+泵转运Cu2+到黑素小体内(TYR的活性激活需要Cu2+的参与),MATP被敲除后,黑素小体内的阳离子相对含量增加,能够激活TYR的Cu2+数量减少,最后导致TYR的活性下降[46]。在白虎上的研究显示,由于SLC45A2基因中的错义突变导致单个氨基酸改变,使褐黑素小体内环境紊乱阻止了褐黑色素的沉积,但是对真黑色素沉积影响较小,故而产生黑色条纹白底毛色的表型[47]。
黑色素生物合成完成后,成熟的黑素小体要被转运到角质细胞中进而发挥作用。目前,黑素小体转运到角质细胞有4种模型[4,48]:①细胞吞噬模型:角质细胞吞噬掉黑色素细胞中富含黑素小体的末端树突;②膜融合模型:黑色素细胞生出具膜管状通道,与角质细胞靠近后融合在一起,黑素小体从管状通道进入到角质细胞中;③脱落吞噬模型:黑色素细胞中富含黑素小体的膜封闭囊泡,脱落后被角质细胞吞噬掉;④胞外分泌内吞模型:黑色素细胞通过胞外分泌作用释放带有黑色素内核的黑素小体到胞外空间,由角质细胞吞噬掉这个带有黑色素核的黑素小体。
黑素小体在角质细胞中的含量将会直接影响皮肤的颜色,皮肤黑的人黑色素细胞转入角质细胞的黑素小体的量要比皮肤白的人多[49]。有些游离的细胞器会在结合自噬体释放的内含物后被溶酶体/液泡降解掉[50],而黑素小体被降解主要是这一因素导致的,这也是不同种族皮肤颜色多样化的原因[51]。皮肤白的人角质细胞的自噬体活性要高于皮肤黑的人,抑制自噬体减少黑素小体的降解,会使皮肤颜色显著加黑;而激活自噬体增加黑素小体的降解,就会使皮肤颜色变浅[51]。进一步的研究表明内皮素-1(Endothelin-1,ET-1)的表达有助于黑素小体融合进入角质细胞[52]。
眼皮肤白化病(Oculocutaneous albinism,OCA)的表型特征一般被描述为皮肤、毛发、眼睛的色素减退症状,以及黑色素合成缺陷导致的眼畸形,所涉及基因均与黑素小体相关(在前文已阐述)。人类的所有种族都有患OCA的可能,平均每17 000人就有1人患有OCA[53],目前被广泛报道的OCA主要有4种类型,分别是由于TYR、OCA2、TYRP1和SLC45A2基因突变所导致的,OCA5还没有得到确认,近两年OCA6和OCA7得到确认,分别是由于SLC24A5和C10orf11突变所导致[54]。人类的眼白化病Ⅰ型基因(Ocular albinism type 1,OA1,GPR143)突变导致白化病X-连锁症状,患者的皮肤正常,但存在虹膜半透明、畏光、眼发育不全以及眼球震颤等眼白化缺陷症状[55]。此外,还存在其他白化病综合征,如Hermansky-Pudlak Syndrome (HPS)和Griscelli syndrome (GS)。其中HPS的9种类型分别由下述基因突变所导致的[54]:HPS1(HPS1)、AP3B1 (HPS2)、HPS3 (HPS3)、HPS4 (HPS4)、HPS5 (HPS5)、HPS6 (HPS6)、DTNBP1 (HPS7)、BLOC1S3 (HPS8)、BLOC1S6 (HPS9)。S.Ammann等[56]指出AP3δ缺陷导致AP-3不稳定产生神经严重紊乱并伴随免疫缺陷和白化病的症状,并将这一病症确定为HPS10。GS分别由3种不同的基因突变导致的:MYO5A、RAB27A、MLPH。GS1主要表现为神经性紊乱;GS2表现为免疫系统缺陷;GS3一般只表现为色素减退而没有系统性的相关病症[57]。
黑色素细胞中用于合成和沉积黑色素颗粒的唯一细胞器是黑素小体,来源于早期核内体,也是特殊的溶酶体相关细胞器(LROs),与LROs相关的白化疾病都与黑素小体相关,最典型的是HPS,主要机制是因为HPS相关基因所组成的蛋白亚基突变,BLOC-1/2/3或AP-1/3转运TYR、TYRP1不能正常到达黑素小体,导致黑色素合成减少甚至缺失。眼白化皮肤病1型和3型是由于TYR、TYRP1突变,酪氨酸不能被TYR、TYRP1催化,在或动物上导致毛发或皮肤黑色素沉积减少,眼白化皮肤病2、4、6型则是由于黑素小体内环境的改变。
在黑素小体成熟过程中,Pmel17不能正常转运和解朊也将导致黑素小体的形态异常,甚至会缺少能够使黑色素沉积的基质,其基因突变则可能直接导致某些哺乳动物的浅色被毛。黑素小体的形态结构依赖于OA1的正常表达,内环境的稳定依赖于离子泵如OCA2、MATP以及SLC24A5所编码的蛋白对黑素小体内阳离子的调控,黑素小体阳离子种类失衡将影响TYR的活性,TYR是黑色素合成过程中的关键酶,TYR活性受到影响会直接导致黑色素的产生受阻。黑色素细胞中黑素小体成熟之后将会被转入到邻近的角质细胞中,有关黑素小体到达角质细胞的途径,已有相关报道证实了“胞外分泌内吞”模型[58]。
人类的白化疾病以及哺乳动物的皮肤/毛发黑色素减退的原因多种多样,但是以黑素小体为核心黑素小体的形态发生和成熟,黑素小体蛋白的正常转入,以及稳定的内环境,都是黑色素合成的基础条件,对黑素小体的正确认识将有助于进一步揭示人类的白化相关疾病,也将为哺乳动物的皮肤/毛发黑色素减退机制提供理论参考。
[1]RAPOSO G,MARKS M S.The dark side of lysosome-related organelles:specialization of the endocytic pathway for melanosome biogenesis[J].Traffic,2002,3(4):237-248.
[2]RAPOSO G,MARKS M S.Melanosomes--dark organelles enlighten endosomal membrane transport[J].NatRevMolCellBiol,2007,8(10):786-797.
[3]SITARAM A,MARKS M S.Mechanisms of protein delivery to melanosomes in pigment cells[J].Physiology(Bethesda),2012,27(2):85-99.
[4]MARKS M S,SEABRA M C.The melanosome:membrane dynamics in black and white[J].NatRevMolCellBiol,2001,2(10):738-748.
[5]DELEVOYE C,HEILIGENSTEIN X,RIPOLL L,et al.BLOC-1 brings together the actin and microtubule cytoskeletons to generate recycling endosomes[J].CurrBiol,2016,26(1):1-13.
[6]THUREAU P,ZIARELLI F,THÉVAND A,et al.Probing the motional behavior of eumelanin and pheomelanin with solid-state NMR spectroscopy:new insights into the pigment properties[J].Chemistry,2012,18(34):10689-10700.
[7]WOLNICKA-GLUBISZ A,PECIO A,PODKOWA D,et al.Pheomelanin in the skin of Hymenochirus boettgeri (Amphibia:Anura:Pipidae)[J].ExpDermatol,2012,21(7):537-540.
[8]LIU-SMITH F,POE C,FARMER P J,et al.Amyloids,melanins and oxidative stress in melanomagenesis[J].ExpDermatol,2015,24(3):171-174.
[9]BERSON J F,THEOS A C,HARPER D C,et al.Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis[J].JCellBiol,2003,161(3):521-533.
[10]HOASHI T,MULLER J,VIEIRA W D,et al.The repeat domain of the melanosomal matrix protein PMEL17/GP100 is required for the formation of organellar fibers[J].JBiolChem,2006,281(30):21198-21208.
[11]RAPOSO G,TENZA D,MURPHY D M,et al.Distinct protein sorting and localization to premelanosomes,melanosomes,and lysosomes in pigmented melanocytic cells[J].JCellBiol,2001,152(4):809-824.
[12]SCHMUTZ S M,DREGER D L.Interaction of MC1R and PMEL alleles on solid coat colors in Highland cattle[J].AnimGenet,2013,44(1):9-13.
[13]HELLSTRÖM A R,WATT B,FARD S S,et al.Inactivation of Pmel alters melanosome shape but has only a subtle effect on visible pigmentation[J].PLoSGenet,2011,7(9):e1002285.
[14]DENNIS M K,MANTEGAZZA A R,SNIR O L,et al.BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery[J].JCellBiol,2015,209(4):563-577.
[15]KOBAYASHI T,URABE K,WINDER A,et al.Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis[J].EMBOJ,1994,13(24):5818-5825.
[16]JIANG Y,ZHANG S,XU J,et al.Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp[J].PLoSOne,2014,9(9):e108200.
[17]WATT B,VAN NIEL G,RAPOSO G,et al.PMEL:a pigment cell-specific model for functional amyloid formation[J].PigmentCellMelanomaRes,2013,26(3):300-315.
[18]HURBAIN I,GEERTS W J,BOUDIER T,et al.Electron tomography of early melanosomes:implications for melanogenesis and the generation of fibrillar amyloid sheets[J].ProcNatlAcadSciUSA,2008,105(50):19726-19731.
[19]MARTINEZ-ESPARZA M,JIMÉNEZ-CERVANTES C,BENNETT D C,et al.The mouse silver locus encodes a single transcript truncated by the silver mutation[J].MammGenome,1999,10(12):1168-1171.
[20]KERJE S,SHARMA P,GUNNARSSON U,et al.The Dominant white,Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene[J].Genetics,2004,168(3):1507-1518.
[21]BRUNBERG E,ANDERSSON L,COTHRAN G,et al.A missense mutation in PMEL17 is associated with the Silver coat color in the horse[J].BMCGenet,2006,7:46.
[22]SITARAM A,DENNIS M K,CHAUDHURI R,et al.Differential recognition of a dileucine-based sorting signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in delivery of OCA2 to melanosomes[J].MolBiolCell,2012,23(16):3178-3192.
[23]SETTY S R,TENZA D,TRUSCHEL S T,et al.BLOC-1 is required for cargo-specific sorting from vacuolar early endosomes toward lysosome-related organelles[J].MolBiolCell,2007,18(3):768-780.
[24]BULTEMA J J,AMBROSIO A L,BUREK C L,et al.BLOC-2,AP-3,and AP-1 proteins function in concert with Rab38 and Rab32 proteins to mediate protein trafficking to lysosome-related organelles[J].JBiolChem,2012,287(23):19550-19563.
[25]GERONDOPOULOS A,LANGEMEYER L,LIANG J R,et al.BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor[J].CurrBiol,2012,22(22):2135-2139.
[26]WASMEIER C,ROMAO M,PLOWRIGHT L,et al.Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes[J].JCellBiol,2006,175(2):271-281.
[27]LOPES V S,WASMEIER C,SEABRA M C,et al.Melanosome maturation defect in Rab38-deficient retinal pigment epithelium results in instability of immature melanosomes during transient melanogenesis[J].MolBiolCell,2007,18(10):3914-3927.
[28]DELEVOYE C,HURBAIN I,TENZA D,et al.AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis[J].JCellBiol,2009,187(2):247-264.
[29]THEOS A C,TENZA D,MARTINA J A,et al.Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes[J].MolBiolCell,2005,16(11):5356-5372.
[30]STALEVA L,ORLOW S J.Ocular albinism 1 protein:trafficking and function when expressed in Saccharomyces cerevisiae[J].ExpEyeRes,2006,82(2):311-318.
[31]CAMAND O,BOUTBOUL S,ARBOGAST L,et al.Mutational analysis of the OA1 gene in ocular albinism[J].OphthalmicGenet,2003,24(3):167-173.
[32]YOUNG A,JIANG M,WANG Y,et al.Specific interaction of Gαi3 with the Oa1 G-protein coupled receptor controls the size and density of melanosomes in retinal pigment epithelium[J].PLoSOne,2011,6(9):e24376.
[33]BAXTER L L,PAVAN W J.Pmel17 expression is Mitf-dependent and reveals cranial melanoblast migration during murine development[J].GeneExprPatterns, 2003,3(6):703-707.
[34]VACHTENHEIM J,BOROVANSKY J.“Transcription physiology” of pigment formation in melanocytes:central role of MITF[J].ExpDermatol,2010,19(7):617-627.
[35]FALLETTA P,BAGNATO P,BONO M,et al. Melanosome-autonomous regulation of size and number:the OA1 receptor sustains PMEL expression[J].PigmentCellMelanomaRes,2014,27(4):565-579.
[36]STURM R A,TEASDALE R D,BOX N F.Human pigmentation genes:identification,structure and consequences of polymorphic variation[J].Gene,2001,277(1):49-62.
[37]EIBERG H,TROELSEN J,NIELSEN M,et al.Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within theHERC2 gene inhibiting OCA2 expression[J].HumGenet,2008,123(2):177-187.
[38]ANCANS J,HOOGDUIJN M J,THODY A J.Melanosomal pH,pink locus protein and their roles in melanogenesis[J].JInvestDermatol,2001,117(1):158-159.
[39]BELLONO N W,ESCOBAR I E,LEFKOVITH A J,et al.An intracellular anion channel critical for pigmentation[J].Elife,2014,3:e04543.
[40]PARK S,MORYA V K,NGUYEN D H,et al.Unrevealing the role of P-protein on melanosome biology and structure,using siRNA-mediated down regulation of OCA2[J].MolCellBiochem,2015,403(1-2):61-71.
[41]CHEN Y,PAN L,SU Z,et al.The transcription factor TBX2 regulates melanogenesis in melanocytes by repressing Oca2[J].MolCellBiochem,2016,415(1-2):103-109.
[42]LAMASON R L,MOHIDEEN M A,MEST J R,et al.SLC24A5,a putative cation exchanger,affects pigmentation in zebrafish and humans[J].Science,2005,310(5755):1782-1786.
[43]GRAF J,VOISEY J,HUGHES I,et al.Promoter polymorphisms in the MATP (SLC45A2) gene are associated with normal human skin color variation[J].HumMutat,2007,28(7):710-717.
[44]NEWTON J M,COHEN-BARAK O,HAGIWARA N,et al.Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism,OCA4[J].AmJHumGenet,2001,69(5):981-988.
[45]DOOLEY C M,SCHWARZ H,MUELLER K P,et al.Slc45a2 and V-ATPase are regulators of melanosomal pH homeostasis in zebrafish,providing a mechanism for human pigment evolution and disease[J].PigmentCellMelanomaRes,2013,26(2):205-217.
[46]BIN B H,BHIN J,YANG S H,et al.Membrane-associated transporter protein (MATP) regulates melanosomal pH and influences tyrosinase activity[J].PLoSOne,2015,10(6):e0129273.
[47]XU X,DONG G X,HU X S,et al.The genetic basis of white tigers[J].CurrBiol,2013,23(11):1031-1035.
[48]SINGH S K,KURFURST R,NIZARD C,et al.Melanin transfer in human skin cells is mediated by filopodia--a model for homotypic and heterotypic lysosome-related organelle transfer[J].FASEBJ,2010,24(10):3756-3769.
[49]MONTAGNA W,CARLISLE K.The architecture of black and white facial skin[J].JAmAcadDermatol,1991,24(6 Pt 1):929-937.
[50]SEGLEN P O,BOHLEY P.Autophagy and other vacuolar protein degradation mechanisms[J].Experientia,1992,48(2):158-172.
[51]MURASE D,HACHIYA A,TAKANO K,et al.Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes[J].JInvestDermatol,2013,133(10):2416-2424.
[52]MURASE D,HACHIYA A,KIKUCHI-ONOE M,et al.Cooperation of endothelin-1 signaling with melanosomes plays a role in developing and/or maintaining human skin hyperpigmentation[J].BiolOpen,2015,4(10):1213-1221.
[53]GRØNSKOV K,BRØNDUM-NIELSEN K,LORENZ B,et al.Clinical utility gene card for:Oculocutaneous albinism[J].EurJHumGenet,2014,22(8).545-551.
[54]MONTOLIU L,GRØNSKOV K,WEI A H,et al.Increasing the complexity:new genes and new types of albinism[J].PigmentCellMelanomaRes,2014,27(1):11-18.
[55]CORTESE K,GIORDANO F,SURACE E M,et al.The ocular albinism type 1 (OA1) gene controls melanosome maturation and size[J].InvestOphthalmolVisSci,2005,46(12):4358-4364.
[56]AMMANN S,SCHULZ A,KRGELOH-MANN I,et al.Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome[J].Blood,2016,127(8):997-1006.
[57]JINDAL R,SHIRAZI N.A 15-year-old boy with silvery white hair,hepatosplenomegaly,and pancytopenia[J].IntJDermatol,2015,54(4):393-395.
[58]TARAFDER A K,BOLASCO G,CORREIA M S,et al.Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes via coupled exo/endocytosis[J].JInvestDermatol,2014,134(4):1056-1066.
(编辑程金华)
The Key Role of Melanosomes in Melanin Production
DU Zhan-yu1.2,ZHAO Jia-ping2,SONG Xing-chao2,LI Xue-jiao3,WU Qiong2,YANG Ying2,XING Xiu-mei2,XU Chao2*,ZHANG Lin-bo1*
(1.JilinAgriculturalUniversity,Changchun130118,China;2.KeyLaboratoryofSpecialEconomicAnimalGeneticBreedingandReproduction,MinistryofAgriculture,StateKeyLaboratoryofSpecialEconomicAnimalMolecularBiology,InstituteofSpecialAnimalandPlantScience,ChineseAcademyofAgriculturalSciences,Changchun130112,China;3.ChangchunChangshengBiotechnologyCo.Ltd.,Changchun130103,China)
The melanosomes are the only organelles which synthesize and deposit melanin in eukaryotic cells.The dysfunction of melanosomes will lead to pigment related diseases in human or mammalian.Biogenesis of melanosomes (melanosome formation and maturation,the premelanosome fiber formation and melanosome protein transportation),the balance of melanosome internal environment and melanosome transportation are essential prerequisite for melanin synthesis and deposition.To review the parameters of melanosomes will be helpful to further understand the result of hypopigmentation in mammalian,revealing the human albinism related diseases and providing a theoretical reference.
melanosome;melanin biosynthesis;internal environment of melanosome;hypopigmentation
10.11843/j.issn.0366-6964.2016.08.002
2016-03-22
吉林省科技发展计划(20130206029NY);中国农业科学院科技创新工程(ASTIP-ISAPS01);特种动物种质资源共享平台
杜站宇(1990-),吉林人,男,硕士生,主要从事生物化学与分子生物学研究,E-mail: 735712137@qq.com
徐超,助理研究员,主要从事特种动物种质资源与遗传育种研究,E-mail:xuchao@caas.cn;张林波,教授,主要从事生物化学与分子免疫学研究,E-mail:cczlb@163.com
S811
A
0366-6964(2016)08-1531-08
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!