当前位置:首页 期刊杂志

运动对认知能力的影响及其神经生物学机制

时间:2024-07-28

王泽军 季浏 褚昕宇

1“青少年健康评价与运动干预”教育部重点实验室,华东师范大学体育与健康学院(上海 200241)2 上海工程技术大学体育部

人体研究与动物实验证明,运动会影响脑的多种功能,对脑的健康有着重要作用,包括提高认知能力[1],延缓由衰老引起的认知能力下降[2,3]以及降低抑郁症状[4,5]。关于运动影响脑功能的机制研究主要集中在运动后神经可塑性的变化方面,如神经发生、突触可塑性、树突棘密度与血管新生等[6,7]。特别是海马作为与认知功能密切相关的脑区,在运动后其齿状回(dentate gyrus,DG)的颗粒细胞下层(subgranular zone,SGZ)会产生大量的新生神经细胞[1,8,9]。因此认为,运动对认知能力的影响至少有部分依赖于海马结构与突触可塑性的改变。

1 运动对认知能力的影响

1.1 成年动物模型

近年来有大量研究都是集中于运动对成年啮齿动物认知能力的影响。这些研究的结果不仅有力地支持了运动有益于脑功能的观点,并有助于了解运动提高认知能力的细胞生物学机制。研究表明,自主跑转轮运动与强迫跑台跑训练均能够提高实验动物在Morris水迷宫,Y-迷宫,T-迷宫与八臂迷宫测试中的空间记忆能力[10]。并且,运动提高了实验动物在海马依赖的行为测试中的成绩,包括情景恐惧条件、被动回避学习与新奇事物认知[11-14]。最新的研究也表明,运动能够提高成年小鼠海马DG依赖的空间模式分离能力[15,16]。该研究中发现,运动组小鼠在较小的空间模式分离测试中成绩更好,而在较大的空间模式分离测试中与对照组相比较并无显著性差异[17]。

1.2 老年动物模型

动物实验表明,学习新任务的能力会随着年龄的增长而降低。从细胞水平来看,年龄的增加会导致海马[18]与大脑皮层[19]神经突触联接的数量减少,突触可塑性降低。新近研究表明,运动有助于提高老年啮齿动物的空间记忆能力[7]与条件回避测试的成绩[2]。实验中发现装有跑转轮装置的老年C57Bl/6雄性小鼠的水迷宫成绩显著好于对照组。进一步研究证实,跑台跑训练同样能提高老年大鼠在水迷宫[20]和八臂迷宫测试中的成绩[21]。新近研究中对26月龄的小鼠进行空间模式分离测试发现,虽然老年小鼠无法习得较小的空间模式分离能力,但是进行跑转轮运动提高了老年小鼠在中等的空间模式分离测试中的成绩[17]。由此看来,无法界定究竟什么样的运动才能够有效延缓或阻止由衰老引起的认知功能下降。

2 运动与神经退行性疾病

一般情况下,运动被认为能够延缓神经退行性疾病的发病[22-24],促进脑损伤后的恢复[25]。然而很多证据显示,运动对阿尔茨海默病(Alzheimer’s disease,AD)、亨廷顿病(Huntington’s disease,HD)以及脑缺血或脑卒中的作用效果并不一致[26]。例如,研究发现沙鼠在脑缺血前进行跑转轮运动具有神经保护的作用[27]。但是,脑卒中后进行运动会引起不良后果[26]。因此,必须谨慎地评价不同病理条件下运动的作用效果。

2.1 运动与阿尔茨海默病

对多种小鼠AD模型的研究表明,无论是在发病前或发病后进行运动干预,均能够提高认知能力。发病前5个月开始运动能够提高水迷宫学习成绩。此外,运动减少了海马和大脑皮层β-淀粉样斑块的沉积[22]。而且,发病后开始的3周运动能够提高老年AD Tg2576小鼠的工作与参考记忆[28],改变炎症标志物水平[29]。运动同样能够提高转基因Tg-NSE/PS2小鼠的水迷宫成绩,增加脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)表达,减少凋亡[30]。研究发现,载脂蛋白E基因的等位基因e4(epsilon 4 allele of the apolipoprotein E gene,APOE e4)是AD发病的风险因素[31],但运动能够提高该转基因小鼠的认知能力和突触可塑性[32]。因此认为,即便在生命后期或者发病后开始运动,也会有助于提高正常小鼠与痴呆模型动物的认知能力。

2.2 运动与帕金森病

尽管研究采用的帕金森病(Parkinson’s disease,PD)动物模型不同,但是通常都会涉及具有神经毒性的6-羟多巴胺(6-hydroxydopamine,6-OHDA)或者1-甲基-4苯基-1,2,3,6-四氢吡啶(1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine,MPTP)[33]。较早研究发现,无论是6-OHDA大鼠还是单侧MPTP老年小鼠模型在黑质纹状体损毁后,进行跑台跑均能够延缓其运动能力下降和降低多巴胺神经元的易感性[24]。随后的研究证实,跑台跑训练增加6-OHDA损毁大鼠黑质体多巴胺神经元的存活以及纹状体的神经纤维投射[34]。另一方面,自主跑转轮运动虽然能够提高注射6-OHDA大鼠的运动成绩,但这样并不会显著影响多巴胺神经末梢的作用[35]。Petzinger等使用MPTP损毁小鼠模型发现,跑台跑训练对运动成绩的促进作用可能伴有黑质纹状体多巴胺神经递质的变化[36]。跑台跑训练不仅提高了PD动物跑步测试的整体成绩,而且在降低焦虑的同时未改变其儿茶酚胺的水平[37]。新近的研究表明,跑台跑训练能通过BDNF的神经保护作用或者增加神经前体细胞的迁移来提高6-OHDA损毁大鼠的运动成绩[38]。而运动同样能够增加MPTP小鼠纹状体GluR2亚基的表达[39]。因此,强迫性跑台跑运动对PD动物多巴胺神经元的保护作用或许是由于运动引起的神经发生、生长因子以及信号传导的作用增强。进一步的研究应该集中于运动是否能够有助于弥补PD动物的认知能力缺陷。

2.3 运动与亨廷顿病

从现有的研究资料来看,仍然不能确定运动是否会延缓或阻止HD的发生。早期的研究表明丰富环境能延缓R6/1转基因小鼠HD症状的出现[40],而运动则是丰富环境的重要组成之一。运动有助于R6/1小鼠抚育行为正常化,延缓后腿抱握、运动协调和空间工作记忆缺陷的出现,但是,运动对跑步测试成绩、可降解蛋白凝集、海马BDNF蛋白水

平[41,42]和神经发生均无显著影响[43]。此外,运动引起R6/2小鼠纹状体中型多棘神经元在电生理方面发生积极的变化[44]。然而,最新的研究却表明运动可能会不利于N171-82Q小鼠脆弱的神经系统。6周龄雄性N171-82Q小鼠(HD症状发生前)在进行跑转轮训练后,其疾病的发病加速,纹状体体积减少并且运动能力损害。更令人惊讶的是,运动并不能对抗小鼠体重丢失、生命时期缩短、高血糖症、Morris水迷宫学习缺陷、海马神经发生损害、未成熟神经元与细胞核内含体形态缺陷,以及DG体积缩小[45]。至于从该HD小鼠上发现的可能机制与运动是否有直接的关系,以及能否从其他HD动物实验中得到类似结果,还需要进一步的研究证实。

3 运动影响认知能力的可能机制

3.1 神经发生

抗抑郁药物、丰富的环境和运动等因素会诱导成年海马DG SGZ持续产生新的神经细胞;相反,应激、抑郁和衰老等因素,能够抑制成年海马神经发生[46]。Kempermann等发现,丰富的环境会诱导SGZ神经细胞的增殖与存活[47]。但是研究中采用的丰富环境包含了多个影响因素,如增加实验动物学习、社会交往以及运动的机会,因而不能确定具体是哪个因素在海马神经发生中具有更为重要的作用。为此,van Praag等[1,9]把其中的各个因素分离出来研究,发现自由跑转轮运动能有效刺激成年小鼠海马DG神经发生,并延长新生神经元的存活时间,同时运动还提高了小鼠的空间学习能力。有研究比较了跑转轮训练与不含跑转轮的丰富环境对神经发生的作用,发现运动对神经发生具有更强的促进作用[48,49],认为跑转轮训练与不含跑转轮的丰富环境对脑功能以及行为会有不同的作用,或者作用互补[50-52]。

另外,对小鼠跑转轮训练的跑动距离与新生细胞数量之间关系的研究发现,单笼饲养的C57Bl/6小鼠之间的跑动距离无显著性差异[1],但是在新生细胞数量与空间模式分离成绩之间存在着某种相关[17]。另有研究使用129SvEv小鼠,发现跑动距离与神经细胞的增殖与存活能力之间表现出了显著的正相关[53]。同样有研究对跑动距离长的小鼠连续繁殖超过26代,发现跑动距离、新生细胞数量以及空间学习能力之间并无显著相关[54],认为可能是由于选择性饲养导致了小鼠神经系统损伤,影响了脑的功能与行为[55]。

此外,Kronenberg对运动诱导细胞增殖与神经发生的作用进行了动力学研究,发现在运动24 h后海马新生神经元数量增加2~3倍,并且细胞增殖效应在运动的第3天最为明显,随后细胞增殖可以一直持续到运动的第10天,但在第32天下降到基础水平,这或许反映了细胞增殖对运动刺激的一种适应[56]。这种现象同样存在于老年动物实验中[57]。而有关昼夜节律的研究发现,单笼饲养的小鼠在夜间循环中间时段的细胞增殖能力最强[58],而循环开始初期是运动促进细胞增殖作用的最佳时间[59]。

值得注意的是,强迫性跑台跑训练同样能够诱导成年海马神经发生[60]。并且,运动不仅可以提高成年小鼠海马神经发生[1,9],同样能够提高老年小鼠海马神经发生[7,56],但是后者的神经发生水平明显较前者低。此外,亦有研究称运动对26月龄小鼠的海马神经发生无显著影响[17]。上述实验结果提示,运动可能是通过提高海马DG新生细胞的增殖能力延缓由衰老引起的神经发生降低以及认知能力下降。

3.2 突触可塑性

运动不仅提高了成年神经发生,同时也增强了海马突触可塑性,特别是有助于长时程增强(longterm potentiation,LTP)——一种推测的学习记忆生理模型[61]。早期研究发现,运动增强了小鼠海马DG区LTP水平,但是对海马CA1区LTP水平以及场兴奋性突触后电位(fi eld excitatory postsynaptic potential,fEPSP)没有显著影响[1]。随后有研究对大鼠进行跑转轮训练[62]或者跑台跑训练[14],发现运动能够有效增强海马DG区LTP水平。此外,由于运动作用于突触可塑性和神经发生的脑部位相同,提示新生神经细胞在运动诱导突触可塑性变化过程中有着重要的功能作用。另一方面,研究发现相对于成熟神经细胞来说,更容易诱导出新生神经细胞的LTP[63]。并且,1~1.5月龄的新生神经元LTP幅度增加,诱导阈值减小[64]。

3.3 树突棘密度

运动增加海马DG新生神经元的同时,也会引起神经细胞的形态变化。树突棘的结构可塑性也被认为是学习记忆的重要机制之一,并且与LTP是两个互相依赖的过程[65,66]。研究发现,跑转轮训练可以诱导CA1区树突增长和变细,增加CA1区锥体细胞和内嗅皮层III锥体细胞的树突棘密度[67]。此外,运动会显著增加DG区的树突长度和复杂程度,以及颗粒细胞的树突棘密度[68,69]。有趣的是,运动除了加速蘑菇型树突的成熟过程,并不能影响成年海马新生神经元的发育[70]。因此,海马DG细胞结构的改变,包括增加新的神经元以及单个神经元的形态变化,都可能是运动提高海马LTP以及海马依赖的认知能力的细胞学基础。

3.4 血管新生

运动能够增强运动皮层[71],小脑[6,72]与海马[7,73-75]的血管新生作用。早期研究发现,脑损伤前进行跑转轮训练会增加海马DG脑缺血后存活的可能性,降低其损伤程度[27],认为运动引起的脑血管系统变化对神经系统起到保护作用,诱导血管的数量以及直径增加。后来的研究兴趣转移到血管生长因子与神经发生的相互关系上。海马DG新生细胞聚集于血管附近[76],对血管生长因子发生增殖反应[77,78]。这也导致了神经前体细胞与血管微环境相关的假说产生,认为神经发生与血管新生密切关联。特别是海马基因转染血管内皮生长因子(vascular endothelial growth factor,VEGF)能够诱导产生大约两倍数量的新生神经元,并提高成年大鼠认知能力[77]。

另外,运动诱导的脑血管变化可能受到VEGF以及胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)作用的调控。运动提高了脑内皮细胞的增殖能力[79]以及血管新生作用[6,80-82]。同时,运动不仅能提高海马IGF-1基因表达与蛋白水平[83-85],还会增加外周血循环中IGF-1与VEGF的含量[85,86];并且,阻断外周VEGF与IGF-1会抑制运动诱导的神经发生[75,86]。

新近研究使用核磁共振成像技术发现,2周跑转轮训练能够有效增加小鼠海马DG血容量,认为血流量的改变可以作为一种间接测定人神经发生水平的方法[87]。然而有研究使用一种有助于神经发生的植物性黄烷醇(-)表儿茶精,诱导血管新生作用的同时并未发现细胞增殖能力提高[88],这也提示血管新生与神经发生两者之间并不总是直接关联的。更有研究认为,血管新生在运动影响认知能力中的作用比神经发生更为重要[89]。考虑到运动中脑血流量发生明显变化,同时血流量的增加会增强神经活动,因此推测血管新生很可能是运动影响认知能力的重要因素。

4 结论与展望

综上所述,对于成年和老年动物甚至人,运动都被认为是一种能提高认知能力的可量化活动。而运动的积极作用很可能是通过调节海马可塑性实现的,包括神经发生、突触可塑性、树突棘密度与血管新生等。然而,结合最新研究可以认为,在脑损伤或某些神经退行性疾病存在的情况下,对运动的选择应该谨慎。此外,有研究发现运动对成年小鼠海马神经发生的促进作用要强于抗抑郁药物氟西汀和度洛西汀[90];另一方面,注射运动模拟药物能够提高小鼠的空间记忆能力,增加海马神经发生[91]。这些结果提示我们:在某种程度上,运动的积极作用会诱导出相应的药理学反应。然而,运动的作用不仅仅局限在神经可塑性和认知的范围内,药物不能够完全取代运动的作用。

[1]van Praag H,Kempermann G,Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci,1999,2(3):266-270.

[2]Adlard PA,Engesser-Cesar C,Cotman CW. Mild stress facilitates learning and exercise improves retention in aged mice. Exp Gerontol,2011,46(1):53-59.

[3]Erickson KI,Voss MW,Prakash RS,et al. Exercise training increases size of hippocampus and improves memory. Proc Nat Acad Sci USA,2011,108(7):3017-3022.

[4]Duman CH,Schlesinger L,Russell DS,et al. Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res,2008,1199:148-158.

[5]Hunsberger JG,Newton SS,Bennett AH,et al.Antidepressant actions of the exercise-regulated gene VGF. Nat Med,2007,13(12):1476-1482.

[6]Black JE,Isaacs KR,Anderson BJ,et al. Learning causes synaptogenesis,whereas motor activity causes angiogenesis,in cerebellar cortex of adult rats. Proc Nat Acad Sci USA,1990,87(14):5568-5572.

[7]van Praag H,Shubert T,Zhao C,et al. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci,2005,25(38):8680-8685.

[8]van der Borght K,Havekes R,Bos T,et al. Exercise improves memory acquisition and retrieval in the Y-maze task:Relationship with hippocampal neurogenesis.Behav Neurosci,2007,121(2):324-334.

[9]van Praag H,Christie BR,Sejnowski TJ,et al.Running enhances neurogenesis,learning,and longterm potentiation in mice. Proc Nat Acad Sci USA,1999,96(23):13427-13431.

[10]van Praag H. Neurogenesis and exercise:Past and future directions. Neuromolecular Med,2008,10(2):128-140.

[11]Falls WA,Fox JH,MacAulay CM. Voluntary exercise improves both learning and consolidation of cued conditioned fear in C57 mice. Behav Brain Res,2010,207(2):321-331.

[12] L iu YF,Chen HI,Lin LC,et al. Treadmill exercise enhances passive avoidance learning in rats:the role of down-regulated serotonin systemin the limbic system.Neurobiol Learn Mem,2008,89(4):489-496.

[13]Mello PB,Benetti F,Cammarota M,et al. Physical exercise can reverse the defi cit in fear memory induced by maternal deprivation. Neurobiol Learn Mem,2009,92(3):364-369.

[14] O 'Callaghan RM,Ohle R,Kelly AM. The effects of forced exercise on hippocampal plasticity in the rat:A comparison of LTP,spatial- and non-spatial learning.Behav Brain Res,2007,176(2):362-366.

[15]Leutgeb JK,Leutgeb S,Moser MB,et al. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science,2007,315(5814):961-966.

[16]McHugh TJ,Jones MW,Quinn JJ,et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science,2007,317(5834):94-99.

[17] C reer DJ,Romberg C,Saksida LM,et al. Running enhances spatial pattern separation in mice. Proc Nat Acad Sci USA,2010,107(5):2367-2372.

[18]Barnes CA. Normal aging:Regionally specifi c changes in hippocampal synaptic transmission. Trends Neurosci,1994,17(1):13-18.

[19] C hen KS,Masliah E,Mallory M,et al. Synaptic loss in cognitively impaired aged rats is ameliorated by chronic human growth factor infusion. Neuroscience,1995,68(1):19-27.

[20] A lbeck DS,Sano K,Prewitt GE,et al. Mild forced treadmill exercise enhances spatial learning in the aged rat. Behav Brain Res,2006,168(2):345-348.

[21]Kim SE,Ko IG,Kim BK,et al. Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol,2010,45(5):357-365.

[22]Adlard PA,Perreau VM,Pop V,et al. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci,2005,25(17):4217-4221.

[23]Kaspar BK,Frost LM,Christian L,et al. Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Ann Neurol,2005,57(5):649-655.

[24]Tillerson JL,Caudle WM,Reveron ME,et al.Exercise induces behavioral recovery and attenuates neurochemical defi cits in rodent models of Parkinson’s disease. Neuroscience,2003,119(3):899-911.

[25]Gobbo OL,O’Mara SM. Exercise,but not environmental enrichment,improves learning after kainic acid-induced hippocampal neurodegeneration in association with an increase in brain-derived neurotrophic factor. Behav Brain Res,2005,159(1):21-26.

[26]Komitova M,Zhao LR,Gido G,et al. Postischemic exercise attenuates whereas enriched environment has certain enhancing effects on lesion-induced subventricular zone activation in the adult rat. Eur J Neurosci,2005,21(9):2397-2405.

[27]Stummer W,Weber K,Tranmer B,et al. Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke,1994,25(9):1862-1869.

[28]Nichol KE,Parachikova AI,Cotman CW. Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behav Brain Res,2007,184(2):124-132.

[29]Parachikova A,Nichol KE,Cotman CW. Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiol Dis,2008,30(1):121-129.

[30]Um HS,Kang EB,Koo JH,et al. Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer’s disease. Neurosci Res,2011,69(2):161-173.

[31]Mahley RW,Weisgraber KH,Huang Y.ApolipoproteinE4:A causative factor and therapeutic target in neuropathology,including Alzheimer’s disease. Proc Nat Acad Sci USA,2006,103(15):5644-5651.

[32]Nichol K,Deeny SP,Seif J,et al. Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimers Dement,2009,5(14):287-294.

[33]Smith AD,Zigmond MJ. Can the brain be protected through exercise? Lessons from an animal model of parkinsonism. Exp Neurol,2003,184(1):31-39.

[34] Y oon MC,Shin MS,KimTS,et al. Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson’s rats. Neurosci Lett,2007,423(1):12-17.

[35] O ’Dell SJ,Gross NB,Fricks AN,et al. Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection.Neuroscience,2007,144(3):1141-1151.

[36] P etzinger GM,Walsh JP,Akopian G,et al. Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci,2007,27(20):5291-5300.

[37]Gorton LM,Vuckovic MG,Vertelkina N,et al.Exercise effects on motor and affective behavior and catecholamine neurochemistry in the MPTP-lesioned mouse. Behav Brain Res,2010,213(2):253-262.

[38]Tajiri N,Yasuhara T,Shingo T,et al. Exercise exerts neuroprotective effects on Parkinson’s disease model of rats. Brain Res,2010,1310:200-207.

[39] V anLeeuwen JE,Petzinger GM,Walsh JP,et al.Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinelesioned mouse model of basal ganglia injury. J Neurosci Res, 2010,88(3):650-668.

[40]van Dellen A,Blakemore C,Deacon R,et al. Delaying the onset of Huntington’s in mice. Nature,2000,404(6779):721-722.

[41]Pang TY,Stam NC,Nithianantharajah J,et al.Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience,2006,141(2):569-584.

[42]van Dellen A,Cordery PM,Spires TL,et al.Wheel running from a juvenile age delays onset of specifi c motor defi cits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci,2008,9:34.

[43] K ohlZ,Kandasamy M,Winner B,et al. Physical activity fails to rescue hippocampal neurogenesis defi cits in the R6/2 mouse model of Huntington’s disease. Brain Res, 2007,1155 :24-33.

[44] C epedaC,Cummings DM,Hickey MA,et al. Rescuing the corticostriatal synaptic disconnection in the R6/2 mouse model of Huntington's disease:Exercise,adenosine receptors and ampakines. PLoS Curr,2010,2 :RRN1182.

[45] P otterM,Yuan C,Ottenritter C,et al. Exercise is not benefi cial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS Curr,2010,2 :RRN1201.

[46]Gage FH,Kempermann G,Song H. Adult Neurogenesis. New York,USA :Cold Spring Harbor Laboratory Press,2008.

[47]Kempermann G,Kuhn HG,Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature,1997,386(6624):493-495.

[48]Ehninger D,Kempermann G. Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex.Cereb Cortex,2003,13(8):845-851.

[49] F abelK,Wolf SA,Ehninger D,et al. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci,2009,3:50.

[50]Hendriksen H,Prins J,Olivier B,et al. Environmental enrichment induces behavioral recovery and enhanced hippocampal cell proliferation in an antidepressantresistant animal model for PTSD. PLoS One,2010,5(8):e11943.

[51]Meshi D,Drew MR,Saxe M,et al. Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci,2006,9(6):729-731.

[52]Kobilo T,Liu Q-R,Gandhi K,et al. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem,2011,18(9):605-609.

[53]Allen DM,van Praag H,Ray J,et al. Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes Dev,2001,15(5):554-566.

[54]Rhodes JS,Hosack GR,Girard I,et al. Differential sensitivity to acute administration of cocaine,GBR 12909,& fluoxetine in mice selectively bred for hyperactive wheel-running behavior.Psychopharmacology,2001,158(2):120-131.

[55]Rhodes JS,van Praag H,Jeffrey S,et al. Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running. Behav Neurosci,2003,117(15):1006-1016.

[56]Kronenberg G,Bick-Sander A,Bunk E,et al. Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging,2006,27(10):1505-1513.

[57] K annangara TS,Lucero MJ,Gil-Mohapel J,et al.Running reduces stress and enhances cell genesis in aged mice. Neurobiol Aging,2011,32(12):2279-2286.

[58]Holmes MM,Galea LA,Mistlberger RE,et al.Adult hippocampal neurogenesis and voluntary running activity:Circadian and dose-dependent effects. J Neurosci Res,2004,76(2):216-222.

[59] v an der BorghtK,Ferrari F,Klauke K,et al.Hippocampal cell proliferation across the day:Increase by running wheel activity,but no effect of sleep and wakefulness. Behav Brain Res,2006,167(1):36-41.

[60]Uda M,Ishido M,Kami K,et al. Effects of chronic treadmill running on neurogenesis in the dentate gyrus of the hippocampus of adult rat. Brain Res,2006,1104 :64-72.

[61]Bliss TV,Collingridge GL. A synaptic model of memory:Long-term potentiation in the hippocampus.Nature,1993,361(6407):31-39.

[62]Farmer J,Zhao X,van Praag H,et al. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience,2004,124(1):71-79.

[63]Schmidt-Hieber C,Jonas P,Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature,2004,429(6988):184-187.

[64]van Praag H,Schinder AF,Christie BR,et al.Functional neurogenesis in the adult hippocampus.Nature,2002,415(6875):1030-1034.

[65]Lang C,Barco A,Zablow L,et al. Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc Nat Acad Sci USA,2004,101(47):16665-16670.

[66]Zhou Q,Homma KJ,Poo MM. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron,2004,44(5):749-757.

[67]Stranahan AM,Khalil D,Gould E. Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus,2007,17(11):1017-1022.

[68]Eadie BD,Redila VA,Christie BR. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation,dendritic complexity,and spine density. J Comp Neurol,2005,486(1):39-47.

[69]Redila VA,Christie BR. Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience,2006,137(4):1299-1307.

[70] Z haoC,Teng EM,Summers RG Jr,et al. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci,2006,26(1):3-11.

[71]McCloskey DP,Adamo DS,Anderson BJ. Exercise increases metabolic capacity in the motor cortex and striatum,but not in the hippocampus. Brain Res,2001,891:168-175.

[72]Isaacs KR,Anderson BJ,Alcantara AA,et al. Exercise and the brain:Angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab,1992,12(1):110-119.

[73]Carro E,Trejo JL,Busiguina S,et al. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci,2001,21(15):5678-5684.

[74]Lorens-Martin M,Torres-Aleman I,Trejo JL.Pronounced individual variation in the response to the stimulatory action of exercise on immature hippocampal neurons. Hippocampus,2006,16(5):480-490.

[75]Trejo JL,Carro E,Torres-Aleman I. Circulating insulinlike growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci,2001,21(5):1628-1634.

[76]Palmer TD,Willhoite AR,Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol,2000,425(4):479-494.

[77] Cao L,Jiao X,Zuzga DS,et al. VEGF links hippocampal activity with neurogenesis,learning and memory. Nat Genet,2004,36(8):827-835.

[78]Jin K,Zhu Y,Sun Y,et al. Vascular endothelial growth factor( VEGF) stimulates neurogenesis in vitro and in vivo. Proc Nat Acad Sci USA,2002,99(18):11946-11950.

[79]Lopez-Lopez C,LeRoith T,Torres-Aleman I.Insulinlike growth factor I is required for vessel remodeling in the adult brain. Proc Nat Acad Sci USA,2004,101(26):9833-9838.

[80]Anderson BJ,Eckburg PB,Relucio KI. Alterations in the thickness of motor cortical subregions after motorskill learning and exercise. Learn Mem,2002,9(1):1-9.

[81]Kleim JA,Cooper NR,VandenBerg PM. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res,2002,934(1):1-6.

[82]Swain RA,Harris AB,Wiener EC,et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat.Neuroscience,2003,117(4):1037-1046.

[83]Ding Q,Vaynman S,Akhavan M,et al. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience,2006,140(3):823-833.

[84]Ding YH,Li J,Zhou Y,et al. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovasc Res,2006,3(1):15-23.

[85]Carro E,Nunez A,Busiguina S,et al. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci,2000,20(8):2926-2933.

[86]Fabel K,Fabel K,Tam B,et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci,2003,18(10):2803-2812.

[87] P ereira AC,Huddleston DE,Brickman AM,et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Nat Acad Sci USA,2007,104(13):5638-5643.

[88]van Praag H,Lucero MJ,Yeo GW,et al. Plant-derived flavanol( -)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci,2007,27(22):5869-5878.

[89] K err AL,Steuer EL,Pochtarev V,et al.Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience,2010,171(1):214-226.

[90]Marlatt MW,Lucassen PJ,van Praag H. Comparison of neurogenic effects of fl uoxetine,duloxetine and running in mice. Brain Res,2010,1341:93-99.

[91]Kobilo T,Yuan C,van Praag H. Endurance factors improve hippocampal neurogenesis and spatial memory in mice. Learn Mem,2011,18(2):103-107.

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!