时间:2024-07-28
袁 巧,谢丽英,陈朝俊
1广州中医药大学,广东 广州 510800;2广州中医药大学附属广州中西医结合医院脑病科,广东 广州 510800
脑卒中已成为我国成年人首要致死病因[1]。目前,溶栓治疗仍是主要治疗措施,欧洲卒中组织发布的最新指南虽将溶栓时间窗进行延长[2],但溶栓条件苛刻、费用高昂及出血并发症等问题仍困扰广大临床工作者和患者。寻找便捷有效的脑卒中防治措施十分有益。
血脑屏障是中枢神经系统和外周循环系统之间的重要屏障,在维持脑内环境稳态中起着至关重要的作用[3,4]。血脑屏障损伤是引起出血性转化、卒中不良后果和限制溶栓治疗的重要因素,是缺血性卒中发病机制中重要的病理过程[5]。P2X7R作为配体门控离子通道家族中一个亚族,由三磷酸腺苷(ATP)激活,广泛表达于中枢神经系统小胶质细胞。急性脑缺血事件发生后,缺血中心区的ATP迅速被消耗,神经元死亡,大量ATP被释放,激活小胶质细胞表面的P2X7R通道,产生大量炎症介质及内源性蛋白水解酶(MMPs),MMPs已被确定为脑缺血和再灌注后血脑屏障损伤的关键介质[6-11]。
缺血性卒中属于中医学“中风”病范畴,中医治疗脑卒中的经验丰富,疗效显著,副作用微。随着中医现代化的推进,越来越多研究者深入探讨中医复方、中药单体、中药作用靶点、针灸对缺血性卒中后血脑屏障通透性的影响[12-14]“。补阳还五汤”是治疗中风的圣方,临床疗效显著,近年来大量研究发现补阳还五汤复方具有保护血脑屏障作用[15,16]。原方中黄芪占比84%,发挥决定性作用,黄芪多糖(APS)是主要有效成分。我们团队既往研究发现适当剂量APS不仅可上调DCs膜表面CD36、IL-12、IL-27 表达,下调IFI16 表达;还可增加HLA-DR、CD86高表达,促进DCs分化与成熟,增加其免疫活性,对动脉粥样硬化的发生及发展具积极干预作用[17,18]。但APS的免疫调节功能是否同样对缺血性卒中免疫炎症过程的血脑屏障损伤起到积极干预作用,目前未见文献报道。本研究通过观察APS对体外血脑屏障模型完整性的影响;对MCAO模型大鼠脑组织依文思蓝(EB)含量、血脑屏障通透性及MMP-9、P2X7R水平表达的影响,进一步探讨APS对缺血性卒中后脑保护作用机制。
SD雄性大鼠20只(南京大学模式动物研究所,动物伦理学审批:20190307013),6周龄,适应性饲养1周;大鼠小胶质细胞(合创生物)。
黄芪多糖(北京索莱宝生物);甲酰胺(天津博迪化工);依文思蓝染液(中科瑞泰);大鼠ATP(北京冬歌生物);极超敏ECL化学发光试剂盒(碧云天);胎牛血清、DMEM-高糖培养基、明胶、PBS磷酸钾缓冲液、青/链霉素、蛋白marker(赛默飞);Anti-GAPDH antibody(1∶10 000)(上海康成生物);Rabbit Anti-Mouse IgG(H+L)(1∶4000)、Goat Anti-Rabbit IgG(H+L)(1∶5000)(southern biotech);peroxidase-Rabbit Anti-Goat IgG(1∶3000)、peroxidase-Rabbit Anti-Rat IgG(1∶2000)、Anti-P2X7R antibody(1∶1000)(武汉博士德生物)。
6孔板细胞培养板(康宁)、24孔板细胞培养板(耐思)、细胞插入器(葛莱娜);紫外分光光度计(赛默飞);低速离心机(中佳);垂直电泳槽、电泳仪、转移电泳槽、半干转移电泳槽、显影仪(天能);台式高速冷冻离心机(天美);核酸蛋白检测仪(嘉鹏);超高效液相色谱串联三重四级杆质谱仪(美国Waters)。
将含有1 mL细胞悬液的冻存管在37 ℃水浴中迅速摇晃解冻,加入5 mL培养基混合均匀;在1000 r/min条件下离心5 min,弃去上清液,补加5 mL完全培养基后吹匀;然后将所有细胞悬液加入培养瓶中培养10 h;第2天换液检查细胞密度达80%~90%,进行细胞传代培养;弃去上清液,用PBS洗涤细胞1~2次,加入trypsin-EDTA 溶液(1 mL/25 cm2,2 mL/75 cm2)于培养瓶中,置于37 ℃培养箱中消化2 min,然后在显微镜下观察到细胞大部分变圆并脱落,迅速拿回操作台,轻敲培养瓶后加5 mL 含10%血清的完全培养基终止消化;吹散细胞,完全脱落后吸出,在1000 r/min条件下离心10 min,弃去上清液,补加2 mL培养液后吹匀。按5 mL/瓶补加培养液,将细胞悬液按1∶3的比例分到新的含5 mL培养液的培养瓶中。放入CO2培养箱(培养条件5%CO2、饱和湿度、37 ℃)。
1.5.1 MCAO模型建立[19]大鼠腹腔用10%水合氯醛(0.25 mL/100 g)进行麻醉后,仰卧固定,取颈正中皮肤切口,暴露右侧颈总动脉,分离迷走神经,将颈总动脉钝性分离至暴露颈外动脉和颈内动脉分叉处。用大鼠动脉血制成长约1 cm的栓子,将栓子冲入颈内动脉内,结扎颈总动脉并缝合肌肉及皮肤。术后24 h观察造模大鼠的行为学改变:对其进行提尾悬空实验,神经功能评分采用Bedersen法[20],1~4分纳入实验。共造模22只大鼠,其中误伤迷走神经窒息死亡1只,术中分离颈外动脉导致大出血剔除2只,完成造模19只,根据Bedersen评分法,造模成功率为90%(18/20)。
1.5.2 糖氧剥夺(OGD)模型建立 将大鼠小胶质细胞均匀地接种于6孔板上,密度为2×105/孔,加入DMEM无糖无血清培养基,于95%N2/5%CO2条件下在37 ℃培养6 h,然后在正常条件(95%O2/5%CO2)下37 ℃培养按细胞分组内各时间点进行收样检测。
1.5.3 细胞分组 将大鼠小胶质细胞分为对照组(0.01 mol/L PBS,24 h)、ATP(3 mmol/L,24 h)组、OGD(72 h)组、ATP(3 mmol/L,24 h)+APS(100 mg/L,48 h)组、OGD(72 h)+APS(100 mg/L,72 h)组。
1.5.4 动物分组 随机将18只SD大鼠分为3组:对照组、MCAO+生理盐水组、MCAO+APS组。对照组SD雄性大鼠6只,腹腔注射生理盐水;MCAO+生理盐水组SD雄性大鼠6只,构建MCAO模型,腹腔注射生理盐水,连续注射3 d;MCAO+APS组SD雄性大鼠6只,构建MCAO模型,腹腔注射APS(45 mg/kg),连续注射3 d。
1.6.1 试漏实验 细胞插入器预先以2%明胶包被;将大鼠小胶质细胞均匀地接种在24孔细胞插入器中,密度为200 000/cm2;放入CO2培养箱(培养条件5%CO2、饱和湿度、37 ℃)培养至汇合状态;显微镜下观察大鼠小胶质细胞达汇合状态后,将细胞培养基加入到插入器的供池,使细胞插入器供池与受池的液面差>0.5 cm;随后,通过试漏试验确定是否成功建立血脑屏障,在4 h后若插入器两池间仍能保持明显的液面差,则认为大鼠小胶质细胞已经完全汇合,血脑屏障基本形成。
1.6.2 液相色谱-质谱检测 APS对血脑屏障的渗透性影响使用LC-MS检测受体池培养基中的APS水平来鉴定。色谱条件如下:色谱柱:Phenomenex Kinetex C18(100 mm×2.1 mm,1.7 μm);柱温:30 ℃;进样量:10 μL;流速:0.4 mL/min;流动相:甲醇(A)和水(B)。梯度洗脱程序:0~0.5 min,10%A;0.5~1.8 min,10%~90%A;1.8~3.8 min,90%A;3.8~4.5 min,90%~5%A;4.5~6.0 min,5%A。质谱条件如下:离子源:电喷雾电离(ESI+);扫描模式:正离子模式扫描;离子源温度:120 ℃;毛细管电压:3.0 kⅤ;脱溶剂气温度:500 ℃;脱溶剂气流量:850 L/h;碰撞气流速:0.11 mL/min,锥孔反吹气流量:150 L/h;检测方式:多反应监测模式。
1.6.3 EB含量测定 大鼠处死前2 h静脉注射EB染料;心脏灌注生理盐水去除脑血管内残留的血液,快速取出脑组织称重记录;放入到甲酰胺(1 mL/100 mg)中37 ℃放置48 h;离心后取上清用分光光度计在620 nm下测量上清液的吸光度值;用倍比稀释法制作标准曲线,在标准曲线基础上将得到的吸光度值换算为EB含量以评价血脑屏障通透性。
1.6.4 ELISA检测 严格按照ELISA检测步骤进行,首先在实验前进行试剂回温;收集SD大鼠皮质脑组织称重,迅速冷冻并将标本匀浆充分;加入PBS,离心后收集上清。配置洗涤液;设置标准品孔、空白孔及样品孔,并分别进行加样;加样后用封板膜封板,放到37 ℃恒温箱孵育60 min;对每孔洗涤后,加入显色剂避光显色;终止反应后用酶标仪450 nm波长测定A值。以标准品浓度为横坐标,吸光度A值为纵坐标,用软件绘制标准曲线,样品中各指标含量可通过对应A值由标准曲线换算出相应的浓度。
1.6.5 Western blot 检测 MMP-9、P2X7R 严格按照Western blot检测步骤进行,取SD大鼠皮质脑组织进行总蛋白抽提、蛋白样品初步定量通过BCA法测量蛋白浓度、准备蛋白上样缓冲液进行SDS-PAGE电泳、运用转膜仪进行转膜、封闭杂交膜、TBST洗膜、暗室中X胶片感光显影。最后进行比较记录分析。
采用SPSS 26.0统计学软件对数据进行处理,符合正态分布的计量资料实验数据以均数±标准差表示,采用单因素方差分析进行组间比较。以P<0.05为差异有统计学意义。
4 h后ATP组及OGD组插入器两池液面差异明显,提示成功建立了血脑屏障体外模型。APS处理后均可降低插入器两池之间的液面差异,改善ATP和OGD对体外血脑屏障模型通透性的影响;此外,LC-MS检测结果提示APS可通过血脑屏障体外模型渗透。这些结果表明APS可修复血脑屏障完整性,改善其通透性(图1)。
与对照组相比,MCAO+生理盐水组、MCAO+APS组大鼠脑组织EB含量增多(P<0.01);与MCAO+生理盐水组相比,MCAO+APS组大鼠脑组织EB含量减少(P<0.05,图2)。
图2 各组大鼠脑组织EB含量的比较Fig.2 Comparison of Evens blue (EB) content in the brain tissue of the rats among the groups.A: Standard curve for EB by ELISA.B:Comparison of EB concentration.**P<0.01 vs control group,#P<0.05 vs MCAO+saline group(n=6).
与对照组相比,MCAO+生理盐水组、MCAO+APS组大鼠脑组织血脑屏障通透性增大(P<0.01);与MCAO+生理盐水组相比,MCAO+APS组大鼠脑组织血脑屏障通透性改善(P<0.05,图3)。
图3 各组大鼠脑组织血脑屏障通透性比较Fig.3 Comparison of blood-brain barrier permeability in rats among the groups.**P<0.01 vs control group,#P<0.05 vs MCAO+saline group(n=6).
与对照组相比,MCAO模型大鼠脑组织中ATP含量减少(P<0.05),APS给药处理对ATP含量有恢复作用(P<0.01,图4)。
图4 各组大鼠脑组织ATP含量变化Fig.4 Changes of ATP content in brain tissue of the rats in each group.A: ELISA standard curve for ATP;B:Concentration ofATP.*P<0.05 vs control group,##P<0.01 vs MCAO+saline group(n=6).
与对照组相比,MCAO模型大鼠脑组织中MMP-9表达水平升高(P<0.01),与MCAO+生理盐水组相比,MCAO+APS组MMP-9表达水平降低(P<0.05,图5)。
图5 各组大鼠脑组织MMP-9表达水平Fig.5 MMP-9 expression level in the brain tissue of rats in each group.A:Western blots of MMP-9 proteins;B: Relative expressions of MMP-9 proteins.**P<0.01 vs control group,#P<0.05 vs MCAO+saline group(n=6).
与对照组相比,MCAO模型大鼠脑组织中P2X7R表达水平升高(P<0.01);APS可逆转MCAO模型大鼠脑组织中P2X7R表达水平的增加(P<0.05,图6)。
图6 各组大鼠脑组织P2X7R表达水平Fig.6 P2X7R expression level in the brain tissue of rats in each group.A: Western blots of P2X7R proteins.B: Relative expressions of P2X7R proteins.**P<0.01 vs control group,#P<0.05(n=6).
血脑屏障损伤是缺血性卒中发病机制中重要的病理过程,可破坏脑内环境稳态,引起脑水肿,并导致缺血性卒中进展,形成恶性循坏。目前对缺血缺氧状态下血脑屏障的研究方法分体内及体外两种:(1)建立体外血脑屏障模型,并模拟OGD状态;(2)建立MCAO动物模型模拟急性脑卒中的状态及结果[21,22]。本研究运用大鼠小胶质细胞培养并构建体外血脑屏障实验模型;建立OGD组模拟脑缺血缺氧状态,并通过试漏实验观察到OGD组插入器两池液面差异明显,体外血脑屏障模型结构遭到破坏,通透性提高。在动物实验中,我们成功建立MCAO模型大鼠,术后24 h收集大鼠脑组织进行染色,发现MCAO 模型大鼠出现脑组织血脑屏障结构损伤,相对应脑组织染色增多,EB含量增加及发生脑水肿。
脑缺血事件后,位于缺血中心区的脑血流量显著降低,能量快速衰竭,ATP迅速被消耗及释放[23],实验发现MCAO模型大鼠脑组织中ATP含量减少,游离在细胞外ATP增加。既往研究结果同样发现与手术对照组(只分离血管不插栓)比较,缺血对照组(缺血2 h不再灌注)及缺血再灌注组ATP含量均减少[24],这与我们的结果保持一致。另外,与对照组相比,MCAO模型大鼠脑组织中MMP-9表达明显升高。正常情况下,MMPs在大脑中表达很低,主要以酶原的形式存在;在缺血性卒中发生后,无论是实验动物或者患者中MMP-9的活性均增高,发生24~48 h后血脑屏障的严重破坏与MMP-9密切相关[25-27],该结论与本研究结果一致。脑缺血环境下脑组织ATP含量变化与MMP-9有何联系?其在缺血性卒中血脑屏障破坏中扮演什么角色?相关机制是什么?这值得进一步探讨。
P2X7R作为嘌呤受体通道,在P2X家族中非常特殊,并在脑小胶质细胞表面高表达[28,29]。P2X7R通道开放具有门控特性,ATP是P2X7R唯一天然激动剂[30,31],正常情况下胞外ATP含量低,亲和力弱,通道呈闭合状态;脑缺血时,与2分子ATP结合可触发P2X7R受体构象改变引发通道开放,进一步通过炎症免疫、钙超载、细胞兴奋毒性持续进行脑损伤[32,33],其中免疫炎症反应过程释放MMPs,使血脑屏障发生降解,导致通透性增加,引起脑水肿[34]。实验发现,与对照组相比,MCAO模型大鼠脑组织中ATP含量减少,MMP-9、P2X7R表达升高,血脑屏障通透性增加。有研究表明在P2X7R基因敲除的MCAO模型小鼠中,小胶质细胞对缺血性损伤反应降低[35]。本实验中APS给药后,MCAO模型大鼠脑组织中ATP含量回升,并显著下调MCAO模型大鼠脑组织MMP-9、P2X7R表达,P2X7R通道在神经信号通道中处于上游的调节位点,我们证实损伤区域小胶质细胞上的P2X7R表达下调,可通过抑制小胶质细胞分泌MMPs,减少对血脑屏障结构的破坏,起到脑保护作用。
缺血性卒中属于“中风”病,病机以气虚无力为本,脉道不通为标,故以益气活血通络为治则的“补阳还五汤”疗效显著。研究发现补阳还五汤可减轻缺血再灌注后脑组织的再损伤[36,37],其疗效与黄芪呈量效关系[38-40]。药理研究中,黄芪具有抗炎、抗凋亡、抗氧化、重建微循环及促进神经修复等作用,APS作为有效化学成分在其中发挥主要作用[41,42]。我们团队既往研究中发现APS对动脉粥样硬化的发生及发展具积极干预作用[17,18]。前期预实验结果显示:APS对缺血性卒中免疫炎症过程中血脑屏障损伤同样起到积极干预作用。有学者发现APS能改善阿尔茨海默病模型小鼠血脑屏障通透性,减轻脑组织水肿的程度[43];也有研究表明黄芪糖蛋白可以抑制自身免疫性脑脊髓炎小鼠中枢神经系统炎症细胞浸润,促进血脑屏障损伤修复[44]。我们在实验中发现APS处理后,通过LC-MS检测发现APS可通过血脑屏障体外模型渗透,试漏实验观察到APS组两池液面差异减小;此外,MCAO模型大鼠脑组织EB含量减少。结果显示APS能改善急性缺血后血脑屏障通透性,一定程度上降低脑细胞的水肿程度,阻滞脑缺血进展。
综上所述,黄芪多糖通过稳定脑缺血缺氧状态下的内环境,下调MMP-9表达水平,改善血脑屏障通透性,起到对MCAO模型大鼠脑组织保护作用,且其作用机制可能与抑制P2X7R通道相关。但其中是否另有其他机制参与尚不明确,另与其他中药有效成分相比黄芪多糖是否具有优势性同样尚不清楚,这也是本研究的局限性,还需进一步深入研究。
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!