时间:2024-07-28
田 娟,郭 芳,赵越超
辽宁医学院 组织学与胚胎学教研室,辽宁锦州 121001
胶质细胞源性神经营养因子及其受体在小鼠肾发育中的表达
田 娟,郭 芳,赵越超
辽宁医学院 组织学与胚胎学教研室,辽宁锦州 121001
目的 探讨胶质细胞源性神经营养因子(glial cell line-derived neurotrophic factor,GDNF)及其受体alpha 1(glial cell line-derived neurotrophic factor family receptor alpha 1,GFRα1)和受体酪氨酸激酶(receptor tyrosine kinase,RET)在小鼠肾发育过程中的表达和作用。方法 应用免疫组织化学和蛋白印迹技术对胚龄(embryonic days,E)12 d、14 d、16 d、18 d胎鼠和生后(neonatal days,N)1 d、7 d、14 d、21 d、40 d仔鼠肾组织中GDNF、GFRα1和RET的表达进行定位观察和定量检测。结果 免疫组化结果:在肾早期发生过程中,GDNF、GFRα1和RET均有表达。输尿管芽可见GDNF、GFRα1和RET的微弱表达;生后肾组织可见GDNF和GFRα1的微弱表达。肾小体发育过程中,在小泡体、逗号小体和S小体阶段可见GDNF和GFRα1的表达明显增强;在毛细血管袢期肾小体和未成熟期肾小体可见GDNF和GFRα1的表达减弱;肾小体发育成熟后,可见GDNF和GFRα1的表达消失。肾泌尿小管发育过程中,在肾小管(近端小管和远端小管)可见GDNF和GFRα1的表达;在集合管可见GDNF、GFRα1和RET的表达。在成熟肾中,GDNF和GFRα1定位表达于肾小管和集合管;RET定位表达于集合管。蛋白印迹结果:随着肾逐渐发育成熟,GDNF、GFRα1和RET在肾中表达量先递增,GDNF在E 18 d时表达量最高,GFRα1和RET在N 1 d时表达量最高;随后,GDNF、GFRα1和RET在肾中表达量逐渐减少。结论 GDNF/GFRα1/RET信号通路对肾发育各阶段及成熟肾功能的维持起重要作用。
胶质细胞源性神经营养因子;胶质细胞源性神经营养因子受体alpha 1;受体酪氨酸激酶;肾;发育;小鼠
胶质细胞源性神经营养因子(glial cell linederived neurotrophic factor,GDNF)是一种糖基化二硫键结合的同源二聚体蛋白质,属于转化生长因子β超家族成员,是目前发现的特异性最强的多巴胺能神经元营养因子[1-2]。GDNF受体由胶质细胞源性神经营养因子受体alpha1(glial cell line-derived neurotrophic factor family receptor alpha 1,GFRα1)和受体酪氨酸激酶(receptor tyrosine kinase,RET)组成。GFRα1为糖基化磷脂酞肌醇锚定受体,缺乏跨膜区和膜内区[3-4];RET则具有膜外、跨膜和膜内成分,起信号传导作用[5-6]。GDNF/GFRα1/ RET信号通路调控体内多个器官系统的发育过程,并维持其正常的生理功能[7-9]。国外文献报道,GDNF/GFRα1/RET信号通路参与肾输尿管芽发生及形态学分支[10-13],推测该信号传导通路在肾的发生、发育过程中发挥重要的作用。另有研究表明,某些肾发育畸变疾病如肾母细胞瘤与GDNF/ GFRα1/RET信号通路的异常调控有关[14]。在前期研究的基础上,我们系统检测了GDNF/GFRα1/ RET信号通路在小鼠肾发生、发育过程中的表达,以便进一步探讨GDNF/GFRα1/RET信号通路参与肾分化、发育的具体调控机制。
1实验动物 昆明系小鼠由中国医科大学实验动物中心(生产许可证SCXK(辽)2008-0005)提供。取成年雌性、雄性小鼠按1∶1合笼,培育孕鼠,通过检查阴道栓精确记录孕鼠的受孕时间。阴道栓脱落的最早时间为胚龄[15](embryonic days,E) 0 d。仔鼠出生的最早时间计为生后(neonatal days,N) 0 d。分组原则:分别取E 12 d、E 14 d、E 16 d、E 18 d胎鼠和N 1 d、N 7 d、N 14 d、N 21 d、N 40 d仔鼠,每组8只,共72只[1]。
2实验试剂 GDNF兔多克隆抗体(sc-328)、GFRα1兔多克隆抗体(sc-10716)、RET兔多克隆抗体(sc-167)购自Santa公司。免疫组化试剂盒、DAB显色试剂盒购自北京中杉金桥生物工程有限公司。3-磷酸甘油醛脱氢酶(glyceraldehyde-3-phosphate Dehydrogease,GAPDH)鼠单克隆抗体购自康成生物公司。
3标本制备 胎鼠肾:孕鼠乙醚麻醉,剖腹取出胎鼠,E 14 d、E 16 d、E 18 d胎鼠分别取左、右肾,E 12 d由于未形成肾完整外形,故取全胚。仔鼠肾:各日龄仔鼠经断头法处死,分别取左、右肾。4%多聚甲醛固定3 h,其中E 12 d需全胚固定,E 14 d、E 16 d、E 18 d左全肾固定,生后各日龄左肾横向截切成薄片状固定,然后用流水冲洗0.5 h。将标本浸入70%、80%、90%、95%、100%乙醇逐级脱水,浸入二甲苯直至标本透明。标本放入液体石蜡中浸蜡3 h后,用石蜡定向包埋。E 12 d全胚尾侧向下纵向包埋,E 14 d、E 16 d、E 18 d全肾纵向包埋,生后各组织块定向包埋。各组织块行连续切片,厚度5μm。
4免疫组织化学染色 石蜡切片浸入二甲苯脱蜡,随后经100%、90%、80%、70%乙醇水化,去离子水漂洗。切片放置切片架上,浸入枸橼酸钠修复液中,高压修复抗原2 min,冷却至室温。依次滴加3% H2O2室温孵育10 min,5%正常山羊血清封闭液室温封闭1 h,一抗4℃孵育过夜,聚合物辅助剂37℃孵育30 min,辣根酶标记抗兔IgG聚合物37℃孵育30 min(工作液浓度分别为GDNF 1∶100,GFRα1 1∶150,RET 1∶150)。DAB显色5 ~ 10 min;苏木素复染,常规乙醇脱水、透明、中性树脂封片。光学显微镜观察、采集图像。以磷酸缓冲液(phosphate buffer solution,PBS)代替一抗作阴性对照。上述各步骤均用0.01 mol/L PBS冲洗[1]。
5蛋白印迹法 取右肾称重,加入适量蛋白裂解液,置于4℃冰箱摇床上,裂解过夜。次日,将组织裂解液混合物置于低温离心机,12 000 g 4℃离心30 min,提取上清液,进行蛋白定量,每管50 μg蛋白分装。将样品蛋白和Marker放入100℃水浴煮沸使蛋白发生变性。蛋白样品经电泳、转膜后,将膜依次置于封闭液室温封闭1 h,一抗工作液中4℃孵育过夜,辣根过氧化物酶(horseradish peroxidase,HRP)标记的二抗工作液中室温孵育2 h (工作液浓度分别为GDNF 1∶500,GFRα1 1∶700,RET 1∶700,二抗1∶5 000)。将膜置于保鲜膜上,A、B发光液按1∶1比例混合,滴加膜上,用BIO-RAD图像分析系统采集图像并分析。
6统计学分析 应用SPSS16.0软件对实验数据进行分析,实验数据以-x±s表示,P<0.05为差异有统计学意义。
1免疫组织化学染色结果 在肾早期发生过程中,GDNF、GFRα1和RET均有表达。其中,输尿管芽可见GDNF、GFRα1和RET的微弱表达;生后肾组织可见GDNF和GFRα1的微弱表达。在肾小体发育过程中,GDNF、GFRα1和RET均有不同程度的表达。其中,在小泡体、逗号小体和S小体阶段可见GDNF和GFRα1的表达明显增强;在毛细血管袢期肾小体和未成熟期肾小体可见GDNF和GFRα1的表达减弱;肾小体发育成熟后,可见GDNF和GFRα1的表达消失。在肾泌尿小管(肾小管和集合管)发育过程中,GDNF、GFRα1和RET均有不同程度的表达。其中,在肾小管(近端小管和远端小管)发育各阶段可见GDNF和GFRα1的表达;在集合管发育各阶段可见GDNF、GFRα1和RET的表达。在成熟肾中,GDNF和GFRα1定位表达于肾小管和集合管;RET定位表达于集合管。见图1、图2、图3。
2 蛋白印迹法检测结果 GDNF在肾发生、发育中的表达变化规律:E 14 d ~ E 18 d,表达量逐渐增加,E 16 d ~ E 18 d表达量明显增加;E 18 d达峰值;E 18 d ~ N 40 d,表达量逐渐减少,N 7 d表达量明显减少。GFRα1和RET在肾发生、发育中的表达变化规律:E 14 d ~ N 1 d,表达量逐渐增加,GFRα1在E 16 d表达量明显增加,RET在E 18 d表达量明显增加;N 1 d达峰值;N 1 d ~ N 40 d,表达量逐渐减少,GFRα1在N 21 d表达量明显减少,RET在N 7 d、N 21 d表达量明显减少。见图4。
哺乳动物的肾来源于胚胎发育中的后肾。中肾管末端向背外侧发出一盲管,即输尿管芽。输尿管芽向头背方向生长,并伸入中肾嵴尾端,经
图 1 GDNF在小鼠肾发育过程中的表达 (免疫组化染色, A:×200; B ~ J:×400)A: N 1 d时,GDNF在小鼠肾中表达;B:输尿管芽和生后肾组织;C:小泡体;D:逗号小体;E:S小体;F:毛细血管袢期肾小体;G:未成熟期肾小体;H:近端小管;I:远端小管;J:集合管Fig. 1 Expression of GDNF in development of mice kidney (immunohistochemistry; A:×200; B-J:×400)A: N 1 d, the expression of GDNF in mice kidney; B: ureteric bud and metanephrogenic tissue; C: vesicle body; D: comma-shaped body; E: S-shaped body; F: capillary loop stage; G: immature renal corpuscles; H: proximal tubule; I: distal tubule; J: collecting duct
图 2 GFRα1在小鼠肾发育过程中的表达(免疫组化染色, A:×200; B ~ J: ×400)A:N 1 d时,GFRα1在小鼠肾中表达;B:输尿管芽和生后肾组织;C:小泡体;D:逗号小体;E:S小体;F:毛细血管袢期肾小体;G:未成熟期肾小体;H:近端小管;I:远端小管;J:集合管Fig. 2 Expression of GFRα1 in development of mice kidney (immunohistochemistry, A:×200; B-J:×400)A: N 1 d, the expression of GFRα1 in mice kidney; B: ureteric bud and metanephrogenic tissue; C: vesicle body; D: comma-shaped body; E: S-shaped body; F: capillary loop stage; G: immature renal corpuscles; H: proximal tubule; I: distal tubule; J: collecting duct
图 3 RET在小鼠肾发育过程中的表达 (免疫组化染色, A:×200 B、C:×400)A:E 16 d时,RET在小鼠肾表达;B:输尿管芽;C:集合管Fig. 3 Expression of RET in development of mice kidney (immunohistochemistry,A:×200; B, C:×400)A:E 16 d,the expression of RET in mice kidney;B:ureteric bud;C:collecting duct
图 4 GDNF、GFRα1和RET在小鼠肾发育各阶段表达量的变化(n=8) A:电泳条带;B:光密度值;aP<0.05, vs GDNF;bP<0.05, vs GFRα1;cP<0.05, vs RET
Fig. 4 Expression of GDNF, GFRα1 and RET in different development stages of mice kidney (n=8) A:electrophoresis strip;B:optical density value;aP<0.05, vs GDNF;bP<0.05, vs GFRα1;cP<0.05, vs RET不断增殖、分化,最终形成集合管。生后肾组织内的间充质细胞呈帽状聚集在输尿管芽末端周围,并不断增殖、上皮化,依次经历小泡体、逗号小体、S小体、毛细血管袢期肾小体、未成熟的肾小体等阶段,最终形成成熟肾小体[15-16]。近年来,有研究表明GDNF及其受体参与并调控肾输尿管芽的生长与分支过程[10-13]。而GDNF或其受体突变常导致肾发育不良或畸形[17-18]。另有研究显示,在某些病理情况下如肾母细胞瘤病人肿瘤组织内或慢性肾衰病人血浆中,均出现GDNF及其受体表达增强或含量增加[14,19]。这些研究提示GDNF/ GFRα1/RET信号通路不仅能够参与正常肾的发生、发育过程;而且与某些肾发育不良、肾肿瘤或慢性肾衰竭的发病机制或病理过程有关。
本研究显示,小鼠肾GDNF、GFRα1和RET在E 12 d时开始表达,表明GDNF信号通路在小鼠肾发育早期就开始发挥作用。随着肾的发育,GDNF和GFRα1在肾小体发育的各个阶段均有表达,说明GDNF/GFRα1与肾小体的发生、增殖和分化密切相关。肾小体发育成熟后,GDNF、GFRα1和RET的表达消失,推测GDNF/GFRα1/ RET信号通路与肾小体的功能无关。有趣的是,作为GDNF的受体之一,RET在各期肾小体均未见表达,这表明在肾发育过程中还可能存在其他能够与GDNF结合的受体。肾泌尿小管(包括近端小管、远端小管和集合管)对肾小体形成的原尿具有浓缩、重吸收和分泌的功能,进而调节机体的水、电解质、酸碱平衡。本研究发现,GDNF、GFRα1和RET在肾泌尿小管的发育和成熟阶段亦有表达,这一结果与前人的研究结果相似[10-13],表明GDNF信号通路在维持肾正常的生理功能方面同样发挥重要作用。随着肾不断发育成熟,GDNF、GFRα1和RET的表达量不断递增,达到峰值之后逐渐递减,其表达峰值出现于E 18 d或N 1 d,即围生期。这也是本研究首次发现的GDNF信号通路在肾发育过程中的表达变化特点,这一特点的意义还有待于进一步研究。
由此可见,GDNF/GFRα1/RET信号通路对肾发育各阶段及成熟肾功能的维持起重要作用。本研究全面、系统地观察了GDNF/GFRα1/RET信号通路在肾发生、发育过程中的表达,这将有助于进一步探讨GDNF/GFRα1/RET信号通路在肾发生、发育中的具体调控机制,为肾畸变等疾病的病因、预防和治疗提供理论基础。
1 赵越超,田娟,郭芳,张雪. 胶质细胞源性神经营养因子在小鼠肾脏发育过程中的表达[J].中国现代医学杂志,2014,24(34):6-10.
2 燕洪涛,柳林.转化生长因子-β超家族受体的研究进展[J].军医进修学院学报,2005,26(6):487-490.
3 Shimoda T, Yaginuma H, Sato N, et al. Neurogenin2 expression together with NeuroM regulates GDNF family neurotrophic factor receptor alpha 1 (GFR alpha 1) expression in the embryonic spinal cord[J]. Dev Biol, 2012, 370(2): 250-263.
4 Guo GF, Singh V, Zochodne DW. Growth and turning properties of adult glial Cell-Derived neurotrophic factor coreceptor alpha 1 nonpeptidergic sensory neurons[J]. J Neuropathol Exp Neurol,2014, 73(9): 820-836.
5 Goodman KM, Kjaer S, Beuron F, et al. RET recognition of GDNFGFRa alpha 1 ligand by a composite binding site promotes Membrane-Proximal Self-Association[J]. Cell Rep, 2014, 8(6): 1894-1904.
6 Patel A, Harker N, Moreira-Santos L, et al. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems[J]. Sci Signal, 2012, 5(235): ra55.
7 Rodrigues DM, Li AY, Nair DG, et al. Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system[J]. Neurogastroenterol Motil, 2011, 23(2):e44-e56.
8 Almeida AR, Arroz-Madeira S, Fonseca-Pereira D, et al. RET/ GFRα signals are dispensable for thymic T cell development in vivo[J]. PLoS One, 2012, 7(12):e52949.
9 Uesaka T, Nagashimada M, Enomoto H. GDNF signaling levels control migration and neuronal differentiation of enteric ganglion precursors[J]. J Neurosci, 2013, 33(41): 16372-16382.
10 Costantini F. GDNF/Ret signaling and renal branching morphogenesis From mesenchymal signals to epithelial cell behaviors[J]. Organogenesis, 2010, 6(4): 252-262.
11 Willecke R, Heuberger J, Grossmann K, et al. The tyrosine phosphatase Shp2 acts downstream of GDNF/Ret in branching morphogenesis of the developing mouse kidney[J]. Dev Biol,2011, 360(2): 310-317.
12 Keefe Davis T, Hoshi M, Jain S. Stage specific requirement of Gfrα1 in the ureteric epithelium during kidney development[J]. Mech Dev, 2013, 130(9-10):506-518.
13 Park HJ, Bolton EC. Glial cell line-derived neurotrophic factor induces cell proliferation in the mouse urogenital sinus[J]. Mol Endocrinol, 2015, 29(2):289-306.
14 Hou XM, Chen X, Wang YL. The role of Pax2 in regulation of kidney development and kidney disease[J]. Yi Chuan, 2011, 33(9):931-938.
15 Khairallah H, El Andalousi J, Simard A, et al. Claudin-7, -16, and -19 during mouse kidney development[J]. Tissue Barriers, 2014,2(4):e964547.
16 Upadhyay KK, Silverstein DM. Renal development: a complex process dependent on inductive interaction[J]. Curr Pediatr Rev,2014, 10(2):107-114.
17 Jeanpierre C, Macé G, Parisot M, et al. RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects[J]. J Med Genet, 2011, 48(7):497-504.
18 Sarin S, Boivin F, Li AH, et al. beta-Catenin overexpression in the metanephric mesenchyme leads to renal dysplasia Genesis via Cell-Autonomous and Non-Cell-Autonomous mechanisms[J]. Am J Pathol, 2014, 184(5): 1395-1410.
19 Orth SR, Ritz E, Suter-Crazzolara C. Glial cell line-derived neurotrophic factor (GDNF) is expressed in the human kidney and is a growth factor for human mesangial cells[J]. Nephrol Dial Transplant, 2000, 15(5): 589-595.
Expression of GDNF and its receptors in development of kidney of mice
TIAN Juan, GUO Fang, ZHAO Yuechao
Department of Histology and Embryology, Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
Objective To investigate expressions and role of glial cell line-derived neurotrophic factor (GDNF),GDNF family receptor alpha l (GFRα1) and RET in the development of mice kidney. Methods Immunohistochemistry and Western blot were used to detect the expressions of GDNF, GFRα1 and RET in E 12 d, E 14 d, E 16 d, E 18 d, N 1 d, N 7 d, N 14 d, N 21 d and N 40 d mice kidneys. Results The results showed that GDNF, GFRα1and RET were expressed in the early stage of renal development. The weak expressions of GDNF, GFRα1and RET were detected in the ureter bud, and the weak expressions of GDNF and GFRα1 were detected in metanephrogenic tissue. During the development process of renal corpuscles, GDNF and GFRα1 were expressed obviously in vesicle bodies, comma-shaped bodies and S-shaped bodies, while they were expressed weakly in capillary loop stage and immature renal corpuscles. With the mature of renal corpuscles, expressions of GDNF and GFRα1 disappeared. During the development process of uriniferous tubule, GDNF and GFRα1 were expressed in renal tubules (proximal tubule and distal tubule); GDNF, GFRα1 and RET were expressed in collecting ducts. In mature kidney, GDNF and GFRα1 were expressed in renal tubules and collecting ducts, RET was expressed in collecting ducts. Western blot results showed that, with the development of kidney, the expressions of GDNF, GFRα1 and RET increased at frst, and reached to the peak at E 18 d (GDNF) and N 1 d (GFRα1 and RET). Then, expressions of GDNF, GFRα1 and RET in kidney decreased along with neonatal age. Conclusion GDNF/GFRα1/RET signaling pathway plays an important role in different development stages of kidney and in maintaining the function of mature kidney.
glial cell line-derived neurotrophic factor; glial cell line-derived neurotrophic factor family receptor alpha l; receptor tyrosine kinase; kidney; development; mice
R 329.4
A
2095-5227(2015)09-0935-05
10.3969/j.issn.2095-5227.2015.09.021
时间:2015-05-04 10:25
http://www.cnki.net/kcms/detail/11.3275.R.20150504.1025.002.html
2015-01-22
辽宁省教育厅科学技术研究项目(L2012307);辽宁省科学技术计划项目(2013022067);辽宁省大学生创新创业训练计划项目(201410160037);国家大学生创新创业训练计划项目(201410160037)
Supported by Scientific Technology Research of Fund Liaoning Provincial Education Department(L2012307); Scientific Technology Program Fund of Liaoning Province(2013022067); College Students' Innovative Entrepreneurial Training Projects of Liaoning Province(201410160037); College Students' Innovative Entrepreneurial Training Projects of China(201410160037)
田娟,女,博士,副主任医师,副教授。研究方向:肾发育的分子调控机制。Email: tian555juan555@sina.com
The frst author: TIAN Juan. Email: tian555juan555@sina.com
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!