时间:2024-07-28
王 铀,崔 赓,任宁涛,王 博,张 恒,齐 鹏,董天祥
解放军总医院 骨科,北京 100853
椎体旋转对后路椎弓根螺钉治疗脊柱畸形置钉准确性的影响
王 铀,崔 赓,任宁涛,王 博,张 恒,齐 鹏,董天祥
解放军总医院 骨科,北京 100853
目的 探讨在后路椎弓根螺钉技术治疗脊柱畸形过程中不同椎体旋转度对置钉准确性的影响。方法 回顾性分析2009年6月- 2012年9月于我院行后路椎弓根螺钉技术治疗的63例脊柱畸形患者,其中男性28例,女性35例,年龄3 ~63(18.87±12.04)岁。在术中椎弓根螺钉置钉全部完成后及矫形前,应用术中CT扫描重建影像,测量椎体旋转角度(R),根据旋转角度分组(1组:R=0°;2组:0° ~ 10°;3组:11° ~ 20°;4组:R>20°),各组螺钉评估位置并行准确性分级。计算每组不同准确性等级的螺钉数目,评级结果为Ⅱ级和Ⅲ级的螺钉评定为误置螺钉且需重新置入;并对在不同的椎体旋转条件下行后路椎弓根螺钉置入的准确性进行比较分析。结果 63例置入椎弓根螺钉共1 072枚,其中1组206枚,2组534枚,3组252枚,4组80枚;置钉破出率分别为4.4%(9枚)、5.8%(31枚)、20.6%(52枚)、40%(32枚);螺钉误置率分别为1.9%(4枚)、2.6%(14枚)、9.9%(25枚)、27.5%(22枚)。和1、2组相比,3、4组的置钉破出率及误置率较高(P<0.01);但3组螺钉破出率及误置率均低于4组(P<0.05)。结论 后路椎弓根螺钉技术治疗脊柱畸形的手术过程中,椎体旋转程度较高时,置钉准确性降低。
椎弓根螺钉;脊柱畸形;椎体旋转
网络出版时间:2015-04-09 17:17 网络出版地址:http://www.cnki.net/kcms/detail/11.3275.R.20150409.1717.003.html
椎弓根螺钉内固定技术的出现和发展为脊柱外科医生行后路手术时提供了更多的选择,由于其生物力学强度高、椎体去旋转能力好、三维矫形能力强、所需固定节段短等优点[1-4],近年来在脊柱畸形的矫形治疗上得到普及。尽管有上述优势,若置钉失误却可导致一系列严重的并发症,如神经功能受损、血管损伤、内固定生物力学强度下降等[5-6]。脊柱畸形病例中,骨性结构的异常是影响椎弓根置钉准确性的主要原因。本研究主要探讨椎体旋转对置钉准确性的影响,对在不同程度的椎体旋转条件下,椎弓根螺钉置钉准确性进行分析。
1 一般资料 2009年6月- 2012年9月于我院行后路全椎弓根螺钉技术治疗的63例脊柱畸形患者,术前诊断为特发性脊柱侧凸者31例,先天性脊柱畸形者25例,Pott's畸形者3例,神经肌肉型脊柱侧凸者2例,退行性脊柱侧凸者2例。其中男性28例,女性35例,年龄3 ~ 63(18.873±12.04)岁。
2 手术及螺钉准确性评定方法 患者气管插管全身麻醉后取俯卧位,消毒后铺无菌单,按术前拟定融合范围选取脊柱后路正中切口,常规切开皮肤及皮下组织,骨膜下电刀剥离两侧椎旁肌,显露预融合节段后方骨性结构后以传统置钉方式徒手置入椎弓根螺钉,待所有螺钉均置入完毕后,行术中CT扫描并给予三维重建。根据重建影像测量椎体旋转角度(R)并分组(1组:R=0°,2组:0° ~ 10°;3组:11° ~ 20°;4组:R>20°)[7],观察螺钉位置并评定其准确性。置钉准确性采取Rao等[8]的评定方法,根据螺钉破出皮质长度(L):0级:未穿破皮质;Ⅰ级:0 ~ 2 mm;Ⅱ级:>2 mm且≤4 mm,Ⅲ级:>4 mm。Ⅱ、Ⅲ级螺钉为误置螺钉,予以重置。若出现误置螺钉,修正螺钉位置后,再次行CT扫描直至所有螺钉位置良好,然后按术前拟定方案进行矫形。
3 统计学方法 采用SPSS16.0统计软件进行统计分析,计量数据以±s表示,多个率的两两比较采用χ2检验,检验水准α=0.05。
63例患者置入椎弓根螺钉共1 072枚,经过CT测量分组及螺钉准确性评估后,其中1组206枚,2组534枚,3组252枚,4组80枚,其置钉破出率分别为9枚(4.4%)、31枚(5.8%)、52枚(20.6%)、32枚(40%),螺钉误置率分别为4枚(1.9%)、14枚(2.6%)、25枚(9.9%)、22枚(27.5%)。1组和2组间螺钉破出率及误置率差异均无统计学意义(P>0.05);与1组、2组相比,3组和4组的置钉破出率及误置率均较高(P<0.01);且3组的螺钉破出率及误置率均明显低于4组(P<0.05)。见表1。
表1 不同椎体旋转程度的置钉准确性Tab. 1 Accuracy of pedicle screws placement with different extent of vertebral rotation (n, %)
后路椎弓根螺钉内固定术应用于脊柱矫形手术以来,由于其强大的矫形能力、优良的生物力学效应,在脊柱矫形上取得了较好的效果[2,9]。然而,脊柱畸形普遍同时存在骨性结构异常及椎管内容物不对称[10-11]。有研究报道称特发性脊柱侧弯上胸弯及主胸弯顶椎凹侧的椎弓根直径较凸侧窄,且在顶椎区域硬膜囊更加靠近凹侧[12-15]。另外,在脊柱畸形患者中,椎体旋转也是一种非常普遍的现象。异常的解剖结构导致了椎弓根螺钉技术应用于矫形易出现置钉错误,并由此带来神经血管损伤、内固定生物力学效应减弱及社会经济负担加重等一系列不良后果。
在影响脊柱畸形椎弓根置钉准确性的诸多原因中,椎体旋转是一个较为重要的因素,因为椎体旋转会导致置钉方向的变化,若术者仍遵循传统思维不予变通,必然增加神经血管受损的风险,且椎体旋转通常体现于三维空间而不仅是横断位,并常伴有椎弓根的形态学异常,如椎弓根不对称、骨性解剖标志缺失等[16]。有文献报道称,椎体旋转角度与凹侧椎弓根直径存在明显负相关关系[17]。这会增加进钉点及钉道方向的不确定性,从而增加置钉难度,提高螺钉误置带来的风险。在普通X线检查上,即使存在椎体三维旋转,也不容易判断,这也是导致置钉准确性下降的一个原因[18]。Hicks等[19]的文献回顾中发现,在脊柱侧弯手术中椎弓根螺钉误置率高达15.7%。既往研究中少有文献报道椎体旋转与置钉准确性的关系,未见关于脊柱畸形椎体旋转与置钉准确性关系的报道。
Tian和Lang[7]于普通腰椎模型试验中发现,徒手置钉准确性与腰椎旋转角度间存在负相关关系(r=-0.8),即随着椎体旋转角度增加,置钉准确性下降。但上述研究仅描述了结构正常的腰椎椎体旋转程度不同时置钉准确性的变化,且椎体旋转局限于轴状位,无法体现脊柱畸形椎体三维旋转的影响。在我们的研究中,除1组和2组置钉准确性无统计学差异外,其他各组间均有统计学差异,3、4组置钉准确性低于1、2组,4组置钉准确性低于3组,我们分析有以下原因:1)椎体旋转使置钉方向及螺钉长度发生变化;2)椎体旋转常伴有双侧椎弓根直径不对称;3)椎体旋转角度越大,以上异常越明显,越容易导致螺钉误置。本研究结果与Tian和Lang研究结果相似,即椎体旋转角度越大,置钉准确性越低。
然而,本研究也有局限性。本研究为回顾性研究,且因为置钉时无法去除其他可影响置钉的因素,如骨结构异常、双侧椎弓根直径不对称等,因此结果难免产生偏倚。但我们认为,这对指导临床工作仍有积极意义。若能采取一些措施在置钉时将椎体旋转的影响尽可能降低,如术前行三维CT扫描,仔细评估椎弓根结构或应用导航技术辅助置钉,则在行脊柱矫形手术时,可进一步提高置钉准确性[20]。另外,纳入病例手术医师并非同一人,这可能对研究结果产生一定影响。本研究依据旋转角度对椎体进行分组时,未对不同的椎体节段进行区分,因此,椎体旋转对椎弓根置钉准确性的影响是否和椎体节段的不同有关,还需在以后的研究中进一步明确。
1 Lee SM, Suk SI, Chung ER. Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 2004, 29(3): 343-349.
2 Gaines RW. The use of pedicle-screw internal fixation for the operative treatment of spinal disorders[J]. J Bone Joint Surg Am,2000, 82A(10): 1458-1476.
3 Kim YJ, Lenke LG, Cho SK, et al. Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis[J]. Spine (Phila Pa 1976), 2004,29(18): 2040-2048.
4 Bridwell KH. Surgical treatment of idiopathic adolescent scoliosis[J]. Spine (Phila Pa 1976), 1999, 24(24):2607-2616.
5 Lonstein JE, Denis F, Perra JH, et al. Complications associated with pedicle screws[J]. J Bone Joint Surg Am, 1999, 81(11):1519-1528.
6 Tormenti MJ, Kostov DB, Gardner PA, et al. Intraoperative computed tomography image-guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery[J]. Neurosurg Focus, 2010, 28(3): E11.
7 Tian W, Lang Z. Placement of pedicle screws using three-dimensional fluoroscopy-based navigation in lumbar vertebrae with axial rotation[J]. Eur Spine J, 2010, 19(11): 1928-1935.
8 Rao G, Brodke DS, Rondina M, et al. Inter- and intraobserver reliability of computed tomography in assessment of thoracic pedicle screw placement[J]. Spine (Phila Pa 1976), 2003, 28(22):2527-2530.
9 O'brien MF, Lenke LG, Mardjetko S, et al. Pedicle morphology in thoracic adolescent idiopathic scoliosis - Is pedicle fixation an anatomically viable technique?[J]. Spine (Phila Pa 1976), 2000,25(18): 2285-2293.
10 Deng Y, Zhou Y, Lu G, et al. Complication of thoracic pedicle screw fixation in spinal deformities[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2009, 34(8):820-824.
11 Kuklo TR, Lenke LG, O'brien MF, et al. Accuracy and efficacy of thoracic pedicle screws in curves more than 90 degrees[J]. Spine(Phila Pa 1976), 2005, 30(2): 222-226.
12 Catan H, Buluç L, Anik Y, et al. Pedicle morphology of the thoracic spine in preadolescent idiopathic scoliosis: magnetic resonance supported analysis[J]. Eur Spine J, 2007, 16(8): 1203-1208.
13 Lam GC, Hill DL, Le LH, et al. Vertebral rotation measurement: a summary and comparison of common radiographic and CT methods[J]. Scoliosis, 2008, 3:16.
14 Parent S, Labelle H, Skalli W, et al. Thoracic pedicle morphometry in vertebrae from scoliotic spines[J]. Spine (Phila Pa 1976),2004, 29(3): 239-248.
15 Takeshita K, Maruyama T, Chikuda H, et al. Diameter, length, and direction of pedicle screws for scoliotic spine: analysis by multiplanar Reconstruction of computed tomography[J]. Spine (Phila Pa 1976), 2009, 34(8): 798-803.
16 Jeswani S, Drazin D, Hsieh JC, et al. Instrumenting the small thoracic pedicle: the role of intraoperative computed tomography image-guided surgery[J]. Neurosurg Focus, 2014, 36(3): E6.
17 Liljenqvist UR, Link TM, Halm HF. Morphometric analysis of thoracic and lumbar vertebrae in idiopathic scoliosis[J]. Spine (Phila Pa 1976), 2000, 25(10): 1247-1253.
18 Hecquet J, Legaye J, Duval-Beaupère G. Access to a threedimensional measure of vertebral axial rotation[J]. Eur Spine J,1998, 7(3): 206-211.
19 Hicks JM, Singla A, Shen FH, et al. Complications of pedicle screw fixation in scoliosis surgery: a systematic review[J]. Spine (Phila Pa 1976), 2010, 35(11): E465-E470.
20 Flynn JM, Sakai DS. Improving safety in spinal deformity surgery:advances in navigation and neurologic monitoring[J]. Eur Spine J,2013, 22(Suppl 2): S131-S137.
Accuracy of posterior pedicle screws placement for surgical correction of spinal deformity with vertebral rotation
WANG You, CUI Geng, REN Ningtao, WANG Bo, ZHANG Heng, QI Peng, DONG Tianxiang
Department of Orthopaedic, Chinese PLA General Hospital, Beijing 100853, China
Corresponding author: CUI Geng. Email: cuigeng@aliyun.com
Objective To explore the accuracy of posterior pedicle screws placement for surgical correction of spinal deformity with different extent of vertebral rotation. Methods Sixty-three patients who underwent surgical spinal deformity correction in our department from June 2009 to September 2012 were included and their clinical data were retrospectively analyzed. Of all 63 patients,there were 28 males and 35 females with an average age of 18.87±12.04 years ranging from 3 to 63 years. After the completion of all pedicle screws insertion and before correction, intraoperative CT scan was applied and three dimensional image was reconstructed to measure vertebral rotation degree (R) and access the accuracy of each screw. According to the vertebral rotation degree, all screws were divided into 4 groups (Group 1: R=0°; Group 2: 0°- 10°; Group 3: 11°- 20°; Group 4: R>20°). Grade Ⅱ and Ⅲ screws were defined as malposition and needed revision. Broken screws rate, malposition rate of each group with different magnitude of vertebral rotation were calculated and analyzed. Results There were 1 072 pedicle screws placed in 63 patients including 206 screws in Group 1, 534 screws in Group 2, 252 screws in Group 3 and 80 screws in Group 4 after intraoperative CT measurement. The broken screws rate in Group 1 was 4.4% (9 screws) and 5.8% (31 screws), 20.6% (52 screws), 40% (32 screws) in Group 2, 3, 4 respectively. And the malposition rate of each group was 1.9% (4 screws) in Group 1 , 2.6% (14 screws) in Group 2, 9.9% (25 screws) in Group 3 and 27.5% (22 screws) in Group 4. Compared with Group 1 and Group 2, significant higher broken screws rate and malposition rate were found in Group 3 and Group 4 (P<0.01). However, it revealed a significant higher broken screws rate and malposition rate in Group 4 in comparison to Group 3 (P<0.05). Conclusion Vertebral rotation provides an obvious influence in accuracy of posterior pedicle screws placement for surgical spinal deformity correction. Screws placement accuracy will be lower when vertebral rotation is severer.
pedicle screws; spinal deformity; vertebral rotation
R 687.3
A
2095-5227(2015)07-0713-03
10.3969/j.issn.2095-5227.2015.07.020
2015-01-22
王铀,男,在读硕士,医师。研究方向:脊柱外科。Email: magicwangyou@163.com
崔赓,男,副主任医师,硕士生导师。Email: cuigeng @aliyun.com
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!