当前位置:首页 期刊杂志

Ⅵ型胶原在正常软骨和骨关节炎软骨中的空间分布

时间:2024-07-28

李 曌,李 鹏,王恒沙,常童洁,高莹莹,陈 超,张里程,张立海,张 毅,唐佩福

1解放军总医院,北京 100853;2军事医学科学院 基础医学研究所细胞生物学研究室,北京 100850;3北京雪邦科技有限公司,北京 100039;4清华大学蛋白质设施细胞影像平台,北京 100084

Ⅵ型胶原在正常软骨和骨关节炎软骨中的空间分布

李 曌1,2,李 鹏1,2,王恒沙3,常童洁4,高莹莹4,陈 超1,张里程1,张立海1,张 毅2,唐佩福1

1解放军总医院,北京 100853;2军事医学科学院 基础医学研究所细胞生物学研究室,北京 100850;3北京雪邦科技有限公司,北京 100039;4清华大学蛋白质设施细胞影像平台,北京 100084

目的 探究骨关节炎软骨中Ⅵ型胶原空间分布的变化规律。方法 应用Hartley豚鼠自发性骨关节炎模型(模型组)和健康豚鼠(对照组),取膝关节软骨做冷冻切片,进行Ⅵ型胶原免疫荧光染色,利用Delta-Vision Elite成像系统和Imaris软件进行断层扫描、3D重建和定量分析,比较两组软骨细胞体积、Ⅵ型胶原厚度与体积的差异。结果 正常软骨中,薄层Ⅵ型胶原层均匀包裹软骨细胞,各层细胞外Ⅵ型胶原层厚度无统计学差异(P>0.05),体积随细胞深度增加而增加(P<0.01);骨关节炎软骨中,Ⅵ型胶原体积减小(P<0.01)且空间分布不规则,移行层呈蜂窝状或出现空洞,放射层中呈点、片状弥散分布,且在细胞周基质外出现散在的Ⅵ型胶原。结论 在骨关节炎软骨中,Ⅵ型胶原体积减少,不完全包裹软骨细胞,出现蜂窝、空洞和弥散分布的现象,这种改变可能是软骨细胞变性的诱因之一。

Ⅵ型胶原;软骨细胞;骨关节炎;豚鼠自发性骨关节炎模型

网络出版时间:2015-04-21 09:26 网络出版地址:http://www.cnki.net/kcms/detail/11.3275.R.20150421.0926.003.html

软骨细胞维持着关节软骨的新陈代谢和正常生理功能[1],调控软骨细胞的物理、化学微环境和维持正常软骨细胞表型的最重要结构是软骨细胞周基质(pericellular matrix,PCM)[2],Ⅵ型胶原蛋白(type Ⅵ collagen)是PCM的一种主要成分[3],其连接于软骨细胞和Ⅱ型胶原网之间,增加了PCM的弹性模量,且与PCM中多种蛋白成分(如纤连蛋白、纤调蛋白等)结合[4],因此被认为是调节软骨细胞物理、化学微环境的重要物质[5-6]。

软骨细胞变性是骨关节炎(osteoarthritis,OA)病理演变的关键[1],软骨细胞物理、化学微环境的改变在其中起到重要作用。Pullig等[7]报道了在OA软骨中Ⅵ型胶原蛋白含量有明显改变,因此它可能与软骨细胞退变有关。由于关节软骨的空间结构对其生物力学性能有很大影响,因此Ⅵ型胶原蛋白空间分布的变化可能在OA发病过程中有重要作用,但目前并无相关文献报道。因此,本研究利用豚鼠自发性OA模型与健康豚鼠对比[8],通过3D图像分析OA软骨中Ⅵ型胶原的空间分布特征,为深入研究OA的病理机制提供基础。

材料和方法

1 实验动物 雄性Hartley豚鼠1月龄5只,体质量300 ~ 350 (332.00±18.91) g;12月龄5只,体质量1 000 ~ 1 300 (1 172.00±86.36) g。购自北京维通利华实验动物中心(许可证号:SCXK(京)2012-0001)。

2 主要试剂与仪器 Frozen Section Compound(Leica);苏木素-伊红染色试剂(江苏碧云天);Anti-CollagenⅥantibody(abcam);FITC-IgG(Santa Cruz);DeltaVision-System(GE),搭载平场复消色差空气镜(40×,数值孔径0.95)、平场复消色差油镜(60×,数值孔径1.35)以及软件SoftWoRx Suite 2.0;Imaris 8.0(Bitplane)。

3 软骨标本的制备 1月龄豚鼠为健康对照组,12月龄为自发性OA组[9];处死豚鼠后解剖双下肢,于内侧胫骨平台处,用手术刀片刮取约0.3 cm× 0.5 cm的软骨片数片,PBS溶液冲洗后于滤纸上吸干表面水分并展平,冷冻包埋剂包埋后-70℃冷冻待用。

4 Ⅵ型胶原免疫荧光染色(immunofluorescence staining,IF) 垂直于软骨表面切取40 μm冷冻切片[6],3%过氧化氢溶液浸泡60 min,室温下10%山羊血清封闭20 min,4℃Anti-CollagenⅥ antibody(1∶50)孵育过夜,PBS漂洗3次,室温下FITC二抗(1∶100)避光孵育30min,PBS漂洗3次后封片待用。以PBS代替一抗作为阴性对照,其他染色方法同上。

5 3D图像采集及处理 在Delta-Vision成像系统[10]观察IF切片Ⅵ型胶原的分布;40×镜下选取典型细胞和区域,60×下(分辨率2 048×2 048,层扫厚度0.2μm)进行细节拍摄,7次去卷积处理后,图像输入Imaris8.0[11],Slice模式(2D)下选取典型细胞(每组每带各10个),测量荧光区域的平均厚度;Surpass模式(3D)下筛选出荧光包裹完整的细胞(每组每带各10个),Surface模块下对荧光区域及荧光包裹区域进行表面重建。测量重建后的荧光区域体积(Ⅵ型胶原体积,Vp)、包裹的空腔体积(软骨细胞体积,Vc)。

6 统计学处理 实验数据采用SPSS19.0统计软件进行分析,数据描述为±s,两组均数比较采用成组设计的t检验,多组均数比较采用方差分析,P<0.05为差异有统计学意义。

结 果

1 正常软骨中Ⅵ型胶原的分布 正常软骨中Ⅵ型胶原均匀包裹在软骨细胞表面(图1A)。表面层Ⅵ型胶原(图1B)呈盘状,长轴与细胞表面平行;移行层Ⅵ型胶原(图1C)近似球体;放射层Ⅵ型胶原包裹的细胞(图1D)大多成对、成组存在,呈椭球体,长轴方向不定。各层细胞表面Ⅵ型胶原厚度:表面层(1.09±0.16)μm,移行层(1.16±0.26)μm,放射层(1.02±0.12)μm,各层厚度差异无统计学意义(P=0.30)。软骨细胞(Vc)及其周围Ⅵ型胶原体积(Vp)测量结果(图2A):表面层Vc(154.90± 41.90)μm3,Vp(293.20±55.48)μm3;移行层Vc(709.50±156.20)μm3,Vp(1 033.60±152.99)μm3;放射层Vc(992.60±111.08)μm3,Vp(1 193.00± 277.73)μm3。从表面层到放射层Ⅵ型胶原所代表的PCM体积随软骨细胞体积的增加而增加(P<0.05),但移行层和放射层Ⅵ型胶原体积差异无统计学意义(P>0.05)。

2 OA软骨中Ⅵ型胶原的分布 OA软骨中的细胞形态和Ⅵ型胶原分布与正常软骨明显不同(图3A),软骨表面未见明显盘状细胞;移行层Ⅵ型胶原分布不均,呈蜂窝状,甚至形成大面积空洞(图3B);放射层有较多成组细胞,成列或成团分布(图3C、图3D),Ⅵ型胶原在细胞周围呈点状或片状弥散分布,不完全包裹软骨细胞;此外,在放射层PCM以外的基质中出现了无规则形状的散在荧光。OA软骨中软骨细胞体积(Vc')和Ⅵ型胶原体积(Vp')测量结果(图2B):移行层:Vc'(752.60±89.95)μm3,Vp'(599.70±250.92)μm3;放射层Vc'(1 079.30± 161.05)μm3,Vp'(1 043.60±625.50)μm3。OA软骨无表面层细胞,放射层Vc'和Vp'都较移行层明显增加(P<0.01)。与正常软骨相比,移行层和放射层的Vc'与正常软骨差异无统计学意义(P>0.05),但移行层和放射层的Vp'较正常软骨明显减少(P<0.01)。

讨 论

图 1 正常软骨Ⅵ型胶原IF染色及3D重建结果A: 正常全层软骨; B ~ D: 正常软骨细胞及Ⅵ型胶原的3D重建图像 (B: 表面层; C: 移行层; D: 放射层)Fig. 1 IF staining and 3D images of type Ⅵ collagen in articular cartilage of healthy knees A: full thickness cartilage (40×); B-D: 3D images of chondrocyte and type Ⅵ collagen coat (B: surface layer; C: transition layer;D: radiation layer) (150-200 serial sections of 2 048×2 048 pixels at an interval of 0.2μm using DeltaVision with 60×objective lens. Chondrocyte was non-transparent while type Ⅵ collagen colored green and was transparent). Scale Bars:40μm, B:3μm, C:3μm, D:4μm

图 2 正常软骨和OA软骨中软骨细胞体积和Ⅵ型胶原体积测量结果 A: 正常软骨(Vc、Vp); B: OA软骨(Vc’、Vp’)Fig. 2 Volumn of chondrocyte (Vc, Vc’) and volumn of type Ⅵ collagen (Vp, Vp’) in each layer in healthy cartilage and OA cartilage A: healthy cartilage (aP<0.01,bP<0.01); B: OA cartilage (aP<0.01,bP<0.01)Note: Surf: surface layer; Trans: transition layer; Radi: radiation layer

图 3 OA软骨Ⅵ型胶原IF染色及3D重建结果A:全层OA软骨;B ~ D:OA软骨细胞及Ⅵ型胶原的3D重建图像 (B:移行层单细胞; C:放射层成列细胞; D:放射层成团细胞)Fig. 3 IF staining and 3D images of type Ⅵ collagen in articular cartilage of OA knees A: full thickness cartilage (40×); B - D: 3D images of chondrocyte and type Ⅵ collagen coat; B: transition layer (left: fluorescent 3D images; right: surface reconstruction images corresponding to the left, chondrocyte colored yellow while type Ⅵ collagen colored green);C: 3 chondrocytes in row in radiation layer (left: fluorescent 3D image; right: surface reconstruction image, type Ⅵ collagen colored green); D: 5 chondrocytes in crowd in radiation layer (left: fluorescent 3D image; right: surface reconstruction image, type Ⅵ collagen colored green). Scale bars: A: 40μm; B: 2μm; C: 8μm; D: 7μm

骨关节炎是最常见的关节退行性疾病,关节软骨表层的Ⅱ型胶原变性和蛋白多糖流失是OA的特征性病理改变[12-13],其形成的主要原因是软骨细胞表型改变,即退变。Ⅵ型胶原与软骨细胞关系密切,是OA软骨细胞表型改变的可能原因。目前关于OA软骨中Ⅵ型胶原的分布规律并未形成共识。Hambach等[14]报道了OA软骨单位中Ⅵ型胶原含量较正常软骨单位显著增加;但Polur等[15]通过原位免疫标记观察证实OA软骨中Ⅵ型胶原在酶解作用下含量减少。这种分歧的产生可能是由于关节软骨是非均一物质,从表面带到深层的钙化带,无论细胞还是基质的形态和性质都有很大差异,基于酶解分离的软骨细胞研究[14-16]或基于二维图像的物质定量[15,17]都忽视了原位细胞和基质的空间结构,因此难以得到一致的结论。

Youn等[18]和Choi等[19]利用激光共聚焦显微镜断层扫描图像构建正常软骨细胞及PCM的3D模型,实现了软骨微观结构的原位重现和定量分析。受之启发,将软骨组织在Delta-Vision Elite成像系统下进行3D观察,并且利用其自带的SoftWoRx软件的还原型迭代去卷积模块减少散射荧光的影响,使3D图像分辨率和处理效果进一步提高。基于以上实验方法的改进,本研究对正常软骨和OA软骨中Ⅵ型胶原进行了体积测量及空间分布的描述,结果显示,OA软骨中Ⅵ型胶原体积减小,形态不规则,PCM中的Ⅵ型胶原呈蜂窝状,甚至出现大面积空洞,且空洞的位置无明显规律。本实验测得正常软骨中,软骨细胞体积与相关文献相近,但各层细胞PCM中的Ⅵ型胶原厚度和体积均较小[18]。其主要原因是去卷积处理后,散射荧光被去除,荧光范围减小;同时,Imaris软件中进行表面重建时,设定的荧光阈值较小。以上两种处理方法使3D图像能更接近组织的真实情况,减小了Ⅵ型胶原厚度和体积测量的误差。

此外,在放射层出现了无规则形状的散在荧光,这些荧光距细胞甚远,存在于PCM以外的基质中,可能是Söder等[4]报道的Ⅵ型胶原含量升高的主要原因。根据OA软骨中软骨细胞的表型改变和数量减少,可以推测其来源于软骨细胞的异常分泌作用[16]或软骨细胞凋亡[20]后残留分散的Ⅵ型胶原。Söder等[4]曾描述过这种散在荧光,并且认为与正常软骨中Ⅵ型与Ⅱ型胶原存在交联不同,这些散在的Ⅵ型胶原与Ⅱ型胶原并无交际。因此,推测这些Ⅵ型胶原与正常软骨细胞周基质中的Ⅵ型胶原有所不同,其理化性质有待进一步研究。

1 Zamli Z, Sharif M. Chondrocyte apoptosis: a cause or consequence of osteoarthritis?[J]. Int J Rheum Dis, 2011, 14(2):159-166.

2 Guilak F, Alexopoulos LG, Upton ML, et al. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage[J]. Ann N Y Acad Sci, 2006, 1068:498-512.

3 Zhang ZJ, Jin W, Beckett J, et al. A proteomic approach for identification and localization of the pericellular components of chondrocytes[J]. Histochem Cell Biol, 2011, 136(2): 153-162.

4 Söder S, Hambach L, Lissner R, et al. Ultrastructural localization of type VI collagen in normal adult and osteoarthritic human articular cartilage[J]. Osteoarthritis Cartilage, 2002, 10(6):464-470.

5 Zelenski N, Leddy HA, Sanchez-Adamsj S, et al. CollagenVI: the Link between the extracellular matrix and chondrocyte mechanotranduction[J]. Trans Orthop Res Soc, 2014, 39: 192.

6 Alexopoulos LG, Youn I, Bonaldo P, et al. Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix[J]. Arthritis Rheum, 2009, 60(3):771-779.

7 Pullig O, Weseloh G, Swoboda B. Expression of type VI collagen in normal and osteoarthritic human cartilage[J]. Osteoarthritis Cartilage, 1999, 7(2): 191-202.

8 Zamli Z, Adams MA, Tarlton JF. Increased chondrocyte apoptosis is associated with progression of osteoarthritis in spontaneous Guinea pig models of the disease[J]. Int J Mol Sci, 2013, 14(9): 17729-17743.

9 Muraoka T, Hagino H, Okano T, et al. Role of subchondral bone in osteoarthritis development: a comparative study of two strains of guinea pigs with and without spontaneously occurring osteoarthritis[J]. Arthritis Rheum, 2007, 56(10):3366-3374.

10 Ohlson MB, Huang ZW, Alto NM, et al. Structure and function of salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation[J]. Cell Host Microbe, 2008, 4(5): 434-446.

11 Davis C-, Kim KY, Bushong EA, et al. Transcellular degradation of axonal mitochondria[J]. Proc Natl Acad Sci U S A, 2014, 111(26):9633-9638.

12 Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ[J]. Arthritis Rheum, 2012, 64(6):1697-1707.

13 Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage[J]. Matrix Biol,2014, 39:25-32.

14 Hambach L, Neureiter D, Zeiler G, et al. Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage[J]. Arthritis Rheum, 1998, 41(6):986-996.

15 Polur I, Lee PL, Servais JM, et al. Role of HTRA1, a serine protease, in the progression of articular cartilage degeneration[J]. Histol Histopathol, 2010, 25(5): 599-608.

16 Horikawa O, Nakajima H, Kikuchi T, et al. Distribution of type VI collagen in chondrocyte microenvironment: study of chondrons isolated from human normal and degenerative articular cartilage and cultured chondrocytes[J]. J Orthop Sci, 2004, 9(1): 29-36.

17 Quinn TM, Hunziker EB, Hauselmann HJ. Variation of cell and matrix morphologies in articular cartilage among locations in the adult human knee[J]. Osteoarthritis Cartilage, 2005, 13(8): 672-678.

18 Youn I, Choi JB, Cao L, et al. Zonal variations in the threedimensional morphology of the chondron measured in situ using confocal microscopy[J]. Osteoarthritis Cartilage, 2006, 14(9):889-897.

19 Choi JB, Youn I, Cao L, et al. Zonal changes in the threedimensional morphology of the chondron under compression:The relationship among cellular, pericellular, and extracellular deformation in articular cartilage[J]. J Biomech, 2007, 40(12):2596-2603.

20 Mobasheri A, Matta C, Zákány R, et al. Chondrosenescence:definition, hallmarks and potential role in the pathogenesis of osteoarthritis[J]. Maturitas, 2015, 80(3):237-244.

Changes of distribution of type Ⅵ collagen in osteoarthritis cartilage based on threedimensional images in situ

LI Zhao1,2, LI Peng1,2, WANG Hengsha3, CHANG Tongjie4, GAO Yingying4, CHEN Chao1, ZHANG Licheng1, ZHANG Lihai1,ZHANG Yi2, TANG Peifu1
1Chinese PLA General Hospital, Beijing 100853, China;2Department of Cell Biology, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China;3Soonbio Pathology Technology Laboratory, Beijing 100039, China;4Imaging Core Facility, Tsinghua University Branch of China National Center for Protein Sciences, Beijing 100084, China
Corresponding author: TANG Peifu. Email: pftang301@163.com; ZHANG Yi. Email: zhangyi612@hotmail.com

Objective To explore the changes of spatial distribution of typeⅥ collagen in osteoarthritis cartilage. Methods Frozen sections of full thick cartilage from osteoarthritis and healthy knee of guinea pig in mode group and control group were performed immunofluorescence staining, and then scanned by Delta-Vision Elite system. The scanning data were processed and analyzed by Imaris software, the volume of chondrocyte (Vc), thickness and volume of typeⅥ collagen (Vp) of the two groups were measured. Results In healthy cartilage, every chondrocyte wore a thin coat of type Ⅵ collagen, whose thickness had no significant difference(P>0.05), and the volume increased (P<0.01) with the increase of depth. In osteoarthritis cartilage, the volume of typeⅥcollagen coat decreased and distributed irregularly. It showed honeycomb distribution and scattered distribution in transition layer and radiation layer, respectively (P<0.01). Moreover, the scattered type Ⅵ collagen was found in extracellular matrix. Conclusion The irregular distribution of typeⅥ collagen in the osteoarthritis cartilage may be one of the factors which induces chondrocyte degeneration.

type Ⅵ collagen; chondrocyte; osteoarthritis; spontaneous guinea pig model of osteoarthritis

R 684.3

A

2095-5227(2015)07-0734-04

10.3969/j.issn.2095-5227.2015.07.025

2015-03-24

李曌,男,在读硕士。研究方向:骨关节炎发病机制。Email: lizhao0215@163.com

唐佩福,男,主任医师,博士生导师,骨科医院院长。Email: pftang301@163.com;张毅,女,研究员,博士生导师,主任。Email: zhangyi612@hotmail.com

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!