当前位置:首页 期刊杂志

间充质干细胞在炎症性肠病治疗中的研究进展*

时间:2024-07-28

王玉明 张晓琦 于成功

南京大学医学院附属鼓楼医院消化内科(210008)

炎症性肠病(inflammatory bowel disease, IBD)是一类慢性非特异性肠道炎症性疾病,包括溃疡性结肠炎(ulcerative colitis, UC)和克罗恩病(Crohn’s disease, CD),其发病主要与机体自身免疫失调有关,表现为辅助性T细胞(Th细胞)1、Th2、Th17 和调节性T 细胞(Treg细胞)失衡,引起对肠道微生物的过度免疫应答,导致慢性肠道黏膜损伤。目前IBD治疗主要着眼于控制活动性炎症和调节免疫功能紊乱,常用治疗药物包括氨基水杨酸制剂、糖皮质激素、免疫抑制剂和生物制剂。间充质干细胞(mesenchymal stem cells, MSC)是一种具有自我复制能力和多向分化潜能的成体干细胞,具有归巢、组织修复和免疫调节功能,其在系统性红斑狼疮、移植物抗宿主病、心肌梗死等多种疾病中的治疗作用已得到证实。近年研究表明MSC在治疗IBD方面具有独特优势。本文就MSC在IBD治疗中的研究进展作一综述。

一、MSC的功能

MSC具有多谱系分化潜能,可参与造血干细胞壁龛形成,发挥免疫调节以及促进组织修复的功能。MSC可抑制T细胞和B细胞增殖、分化,影响树突细胞(DC)成熟,还能募集Treg细胞,促使未成熟DC分化为调节性DC,并诱导促炎性的M1型巨噬细胞转化为具有免疫调节作用的M2型巨噬细胞[1]。MSC可减少肠黏膜巨噬细胞浸润,下调巨噬细胞15-脂氧合酶-1(15-LOX-1)水平以及肿瘤坏死因子(TNF)-α、白细胞介素(IL)-1β、干扰素(IFN)诱导蛋白(IP)-10等炎症因子分泌,同时促进IL-10表达[2]。MSC通过分泌免疫抑制因子、细胞因子和生长因子,如IL-6、转化生长因子(TGF)-β、前列腺素E2(PGE2)、血小板衍生生长因子(PDGF)等,调控炎症反应,维持组织稳态。此外,MSC还可分化为多种间充质谱系细胞,通过原位替换功能失调细胞,促进组织修复和黏膜愈合[3]。MSC对IBD的疗效、安全性和可行性逐渐得到证实,并已成为目前的研究热点。

二、MSC在IBD治疗中的应用

1. MSC在IBD治疗中的应用现状:常规治疗对CD并发肛瘘患者常无疗效,生物制剂和外科手术治疗可使其部分治愈,但不良反应较多。目前已有8项针对MSC治疗CD并发肛瘘的 Ⅰ~Ⅲ 期临床试验完成[4-13](表1),超过200例CD并发肛瘘患者接受MSC治疗,超过半数患者完全缓解,其中约75%可维持缓解至少24周,至少2/3对治疗有应答。尽管MSC的来源、给药途径和注射剂量有所不同,以上试验结果均证实了自体或异体MSC用于CD并发肛瘘治疗的有效性和安全性。

此外,目前已有3项针对同种异体MSC治疗IBD的临床试验完成,共纳入31例UC或CD患者,临床应答率和缓解率约为60%和40%[14-16];2项针对自体骨髓MSC治疗IBD的临床试验效果欠佳[17-18](表2)。

2. 临床应用MSC的来源:MSC来源广泛,可从骨髓、脐带、脐带血、胎盘、脂肪组织、牙髓等组织和体液中分离获取。目前用于治疗CD并发肛瘘的MSC大多数来源于脂肪组织[4-9,11-12],仅两项研究使用骨髓来源MSC[10,13];而UC或CD患者的治疗更倾向于利用骨髓或脐带血MSC[14-18]。Li等[19]证实脂肪组织和脐带血MSC的免疫抑制作用优于骨髓MSC。不同来源的MSC治疗效果的差异性仍需更多对照研究加以明确。

自体和同种异体MSC局部注射对CD并发肛瘘疗效较好,但自体MSC对UC、CD以及系统性红斑狼疮等自身免疫性疾病疗效不佳。研究表明CD患者脂肪组织MSC可有效缓解葡聚糖硫酸钠(DSS)诱导的小鼠结肠炎症,从目前的临床研究结果来看,与自体MSC相比,同种异体MSC更为稳定,且疗效更佳[20]。

3. MSC的临床应用剂量:已有研究表明,不同治疗剂量(1×106~2×106/kg)[15-16]和给药方案(单次注射或多次重复注射)[16,18]的疗效差异不大,但仍需更多长期随访数据加以验证。用于CD并发肛瘘治疗的MSC剂量差异较大,但均有疗效;部分瘘管不愈合者可二次注射相同或更高剂量的MSC(表1)。一项Ⅱ期临床试验表明,低剂量(10×106或30×106MSC)治疗组疗效优于高剂量(90×106MSC)组[13]。MSC的最优治疗剂量仍有待进一步的临床研究加以明确。

4. MSC的临床应用途径:局部注射MSC是治疗CD并发肛瘘的有效途径。自体MSC附着于可吸收基质并置入肛瘘可取得较好疗效[9]。静脉注射易行、微创和安全,但因MSC滞留于肺部,到达肠道炎症部位的MSC比例下降。经肠系膜上动脉注射MSC介入治疗可增加到达炎症部位的MSC数量,疗效较好[21],然而因其具有侵入性,且疗效优势不明显,故MSC在IBD治疗中更倾向于利用静脉输注方式给药。

三、MSC在 IBD治疗中存在的问题

1. 安全性:干细胞具有癌基因激活、抑癌基因失活的典型肿瘤细胞特性,且细胞连续传代可导致其分化,因而MSC移植是否会诱发新生肿瘤的问题备受关注。有研究[22]显示MSC并不增加感染或恶性肿瘤的发生风险,甚至可显著抑制结肠炎相关结直肠癌。一项系统综述也表明患者行MSC移植后可能会出现短暂低热,但并未出现组织异位生长[23]。目前尚无MSC诱发新生肿瘤或导致其他严重不良反应的报道,其在IBD治疗中的安全性仍需更多长期随访数据加以证实。

表1 MSC治疗CD并发肛瘘的临床试验

CDAI:CD活动指数;PDAI:肛周疾病活动指数;MaRIA:磁共振活动指数

表2 MSC治疗IBD的临床试验

2. 临床治疗方案标准化:MSC移植治疗IBD的有效性和安全性已有大量基础和临床研究支持,但其来源、最佳剂量、给药途径、注射间隔时间和次数等问题尚无定论。为了确保MSC临床应用的规范性,亟需制订标准化的治疗方案。

3. 提高MSC疗效以及延长效应时间:MSC的免疫抑制效应需要炎症因子如IFN-γ、TNF-α、Toll样受体(TLR)配体等参与,通过改变炎症条件可调节MSC介导的免疫抑制作用。研究[24-25]证实TLR3预处理以及过表达IFN-γ均可显著增强MSC对DSS诱导小鼠结肠炎的疗效。此外,移植受体MSC中的供体DNA呈时间依赖性减少,因此为保证MSC长期有效,可尝试增加MSC的植入量。低氧预处理可增加MSC表面趋化因子受体CXCR4表达,诱导MSC迁移至受损部位,发挥对模型小鼠心肌梗死的疗效[26]。另有研究[27]证实脐带血MSC提取物(MSC-Ex)可通过阻断促炎因子表达以及改变巨噬细胞表型发挥对小鼠结肠炎的疗效,且其疗效优于MSC。预处理MSC对其疗效的影响有待更多研究 加以验证。

生理浓度的硫唑嘌呤、甲氨蝶呤、巯基嘌呤和TNF-α抗体对MSC存活及其抑制单核细胞增殖的特性无明显影响,巯基嘌呤和TNF-α抗体可增强MSC对单核细胞的抑制作用[28]。高浓度的硫唑嘌呤可抑制大鼠骨髓MSC增殖,并促进其凋亡[29]。MSC和Treg细胞联用可增强MSC或Treg细胞对DSS诱导小鼠结肠炎的疗效[30]。MSC与其他细胞或药物联用的疗效有待进一步研究验证。

四、结语

MSC移植作为一种微创、低感染风险的生物疗法,可促进IBD患者黏膜愈合,降低患者CDAI和Mayo评分,改善其临床症状,提高其生活质量,疗效和安全性均较好。然而目前MSC治疗IBD仍处于临床试验阶段,仍有较多问题亟待解决。随着MSC在IBD中研究的深入,其有望成为IBD治疗的新选择。

1 Gao F, Chiu SM, Motan DA, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects[J]. Cell Death Dis, 2016, 7: e2062.

2 Mao F, Wu Y, Tang X, et al. Human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease through the regulation of 15-LOX-1 in macrophages[J]. Biotechnol Lett, 2017, 39 (6): 929-938.

3 Ma S, Xie N, Li W, et al. Immunobiology of mesenchymal stem cells[J]. Cell Death Differ, 2014, 21 (2): 216-225.

4 García-Olmo D, García-Arranz M, Herreros D, et al. A phase Ⅰ clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation[J]. Dis Colon Rectum, 2005, 48 (7): 1416-1423.

5 Guadalajara H, Herreros D, De-La-Quintana P, et al. Long-term follow-up of patients undergoing adipose-derived adult stem cell administration to treat complex perianal fistulas[J]. Int J Colorectal Dis, 2012, 27 (5): 595-600.

6 Garcia-Olmo D, Herreros D, Pascual I, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase Ⅱ clinical trial[J]. Dis Colon Rectum, 2009, 52 (1): 79-86.

7 Cho YB, Lee WY, Park KJ, et al. Autologous adipose tissue-derived stem cells for the treatment of Crohn’s fistula: a phase Ⅰ clinical study[J]. Cell Transplant, 2013, 22 (2): 279-285.

8 Lee WY, Park KJ, Cho YB, et al. Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn’s fistula[J]. Stem Cells, 2013, 31 (11): 2575-2581.

9 Dietz AB, Dozois EJ, Fletcher JG, et al. Autologous Mesenchymal Stem Cells, Applied in a Bioabsorbable Matrix, for Treatment of Perianal Fistulas in Patients With Crohn’s Disease[J]. Gastroenterology, 2017, 153 (1): 59-62. e2.

10Ciccocioppo R, Bernardo ME, Sgarella A, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease[J]. Gut, 2011, 60 (6): 788-798.

11de la Portilla F, Alba F, García-Olmo D, et al. Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase Ⅰ/Ⅱa clinical trial[J]. Int J Colorectal Dis, 2013, 28 (3): 313-323.

12Panés J, García-Olmo D, Van Assche G, et al; ADMIRE CD Study Group Collaborators. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial[J]. Lancet, 2016, 388 (10051): 1281-1290.

13Molendijk I, Bonsing BA, Roelofs H, et al. Allogeneic Bone Marrow-Derived Mesenchymal Stromal Cells Promote Healing of Refractory Perianal Fistulas in Patients With Crohn’s Disease[J]. Gastroenterology, 2015, 149 (4): 918-927. e6.

14Onken J, Gallup D, Hanson J. et al. Successful outpatient treatment of refractory Crohn’s disease using adult mesenchymal stem cells. American College of Gastroenterology Conference[C]. ACG 2006 Final Program Book, 2016, 121.

15Liang J, Zhang H, Wang D, et al. Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease[J]. Gut, 2012, 61 (3): 468-469.

16Forbes GM, Sturm MJ, Leong RW, et al. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy[J]. Clin Gastroenterol Hepatol, 2014, 12 (1): 64-71.

17Duijvestein M, Vos AC, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase Ⅰ study[J]. Gut, 2010, 59 (12): 1662-1669.

18Dhere T, Copland I, Garcia M, et al. The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn’s disease - a phase 1 trial with three doses[J]. Aliment Pharmacol Ther, 2016, 44 (5): 471-481.

19Li X, Bai J, Ji X, et al. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation[J]. Int J Mol Med, 2014, 34 (3): 695-704.

20Bocelli-Tyndall C, Bracci L, Spagnoli G, et al. Bone marrow mesenchymal stromal cells (BM-MSC) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytesinvitro[J]. Rheumatology (Oxford), 2007, 46 (3): 403-408.

21Dinesen LC, Wang A, Vianello F. W1148 Mesenchymal Stem Cells Administered via Novel Selective Mesenteric Artery Cannulation for the Treatment of Severe Refractory Crohn’s Disease[J]. Gastroenterology, 2009, 136 (5): A664.

22Tang RJ, Shen SN, Zhao XY, et al. Mesenchymal stem cells-regulated Treg cells suppress colitis-associated colorectal cancer[J]. Stem Cell Res Ther, 2015, 6: 71.

23Lalu MM, McIntyre L, Pugliese C, et al; Canadian Critical Care Trials Group. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials[J]. PLoS One, 2012, 7 (10): e47559.

24Fuenzalida P, Kurte M, Fernández-O’ryan C, et al. Toll-like receptor 3 pre-conditioning increases the therapeutic efficacy of umbilical cord mesenchymal stromal cells in a dextran sulfate sodium-induced colitis model[J]. Cytotherapy, 2016, 18 (5): 630-641.

25Chen Y, Song Y, Miao H, et al. Gene delivery with IFN-γ-expression plasmids enhances the therapeutic effects of MSC on DSS-induced mouse colitis[J]. Inflamm Res, 2015, 64 (9): 671-681.

26Hu X, Wu R, Jiang Z, et al. Leptin Signaling Is Required for Augmented Therapeutic Properties of Mesenchymal Stem Cells Conferred by Hypoxia Preconditioning[J]. Stem Cells, 2014, 32 (10): 2702-2713.

27Song JY, Kang HJ, Hong JS, et al. Umbilical cord-derived mesenchymal stem cell extracts reduce colitis in mice by re-polarizing intestinal macrophages[J]. Sci Rep, 2017, 7 (1): 9412.

28Duijvestein M, Molendijk I, Roelofs H, et al. Mesenchymal stromal cell function is not affected by drugs used in the treatment of inflammatory bowel disease[J]. Cytotherapy, 2011, 13 (9): 1066-1073.

29Huang HR, Zan H, Lin Y, et al. Effects of azathioprine and infliximab on mesenchymal stem cells derived from the bone marrow of ratsinvitro[J]. Mol Med Rep, 2014, 9 (3): 1005-1012.

30Yu Y, Zhao T, Yang D. Cotransfer of regulatory T cells improve the therapeutic effectiveness of mesenchymal stem cells in treating a colitis mouse model[J]. Exp Anim, 2017, 66 (2): 167-176.

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!