时间:2024-07-28
诸葛春凤 刘诗权
广西医科大学第一附属医院消化科(530021)
上皮-间质转化在结直肠癌中的研究进展
诸葛春凤刘诗权*
广西医科大学第一附属医院消化科(530021)
摘要结直肠癌是常见的恶性肿瘤,侵袭转移是导致患者死亡的主要原因。上皮-间质转化(EMT)是上皮细胞转变为间质表型的过程,参与包括结直肠癌在内多种肿瘤的发生、发展、侵袭和转移,并与肿瘤化疗耐药密切相关。EMT的发生涉及多条信号通路,但其机制尚未完全阐明。本文就EMT机制及其在结直肠癌中的研究进展作一综述。
关键词上皮-间质转化;结直肠肿瘤;分子机制;信号通路;抗药性, 肿瘤
Drug Resistance, Neoplasm
上皮-间质转化(epithelial-mesenchymal transition, EMT)指上皮细胞失去极性,细胞骨架重塑,转变成具有侵袭转移能力的间质样上皮的现象[1]。EMT分为三种亚型:Ⅰ型EMT与胚胎发育和器官形成有关,Ⅱ型EMT与创伤修复、炎症和纤维化有关,Ⅲ型EMT与肿瘤侵袭、转移和凋亡密切相关[2]。EMT主要表现为上皮表型消失,如上皮细胞标记物E-cadherin、β-catenin等表达下调或逐渐消失,并获得间质表型,如间质细胞标记物N-cadherin、Vimentin、MMPs等,β-catenin核易位,负性调控膜相关性E-cadherin/β-catenin复合物的形成,使肿瘤细胞间黏附能力下降,导致细胞骨架动力学改变,从而增强肿瘤细胞侵袭转移的能力。
一、EMT的概念和特征
1982年Greenburg等[3]研究人晶状体时发现,其上皮细胞在胶原凝胶中发生形态的改变,形成伪足,并向间质样细胞分化,从而提出EMT的概念。Boden国际会议提出:在细胞形态学和侵袭运动方面,可用下列标准来判断是否发生EMT:①细胞极性的丧失,细胞与细胞间结构相对松散;②出现纺锤形样或成纤维样的形态;③板状/丝状伪足的出现;④侵袭转移增强[4]。
二、EMT参与结直肠癌的分子机制
1. 上皮细胞表型的维持:上皮标志分子主要包括黏附蛋白E-cadherin、β-catenin和Occludin等,其中E-cadherin是肿瘤侵袭转移的关键分子事件。E-cadherin可招募细胞质中的β-catenin,形成E-cadherin/β-catenin复合物,参与细胞间连接[5]。E-cadherin还可通过β-catenin与肌动蛋白纤维相连,形成稳定的细胞间连接。肿瘤细胞的分化依赖于E-cadherin,分化较好的癌细胞株中,E-cadherin表达接近正常状态,而在未分化或低分化癌中的表达减弱或不表达。E-cadherin受多种生长因子(EGF、FGF/HGF、TGF-β等)和转录因子(Snail/slug、Zeb1/2、Smad、Twist)调控,这些因子作用于E-cadherin启动子E盒,抑制其转录和表达[6-7]。细胞内E-cadherin是黏附连接和上皮完整性的主要组件,低表达和缺失均会引起细胞间黏附力减弱,运动能力增强,从而引起肿瘤细胞侵袭转移。Ding等[8]发现E-cadherin表达缺失常见于进展型结肠癌,因此结肠癌中E-cadherin表达减少或缺失可能常伴有远处转移,且患者预后差。E-cadherin基因可通过沉默甲基化启动序列完成转录水平的调节[9]。Brabletz等[10]发现抑制E-cadherin的表达,诱导β-catenin核易位可增强结直肠癌细胞的侵袭能力,且E-cadherin低表达与结直肠癌发生远处转移有关。由此可见,E-cadherin可作为评估结直肠癌浸润、扩散和细胞分化程度等的一项检测指标。
2. 间质表型标记物:Vimentin为间叶细胞中的细胞骨架蛋白,在正常上皮细胞中不表达,仅见于肿瘤间质,因此Vimentin可作为细胞EMT的重要标志。大量研究已证实Vimentin在多种恶性肿瘤(如肺癌、胃癌、结肠癌、前列腺癌等)中表达,且与肿瘤细胞的分化、侵袭和转移密切相关[11]。但即使同一肿瘤,不同细胞株中Vimentin表达亦不相同,如Vimentin在结肠癌细胞株SW480中高表达,而在其他细胞株(HT-29、SW948、RKO)中甚至不表达。研究[12]发现干扰Vimentin mRNA下调其表达,对于SW480结肠癌细胞的黏附特性无影响,细胞划痕实验和侵袭实验显示细胞迁移、侵袭能力显著下降。邵书先等[13]的研究发现结直肠癌组织中Vimentin基因的甲基化率增高,但与患者的性别、年龄、肿瘤部位、淋巴结转移、远处转移和TNM分期均无关,说明Vimentin基因甲基化检测可能对诊断早期结直肠癌具有重要意义。
3. p53基因:p53为调控结肠癌EMT发生的关键分子,能调控侵袭性肿瘤中与转移有关的基因。在p21不存在的情况下,p53从野生型向突变型转变,抑制E-cadherin表达并上调Slug和Zeb-1表达,后者是抑制E-cadherin表达的转录因子,从而促进EMT的发生。突变型p53对E-cadherin的抑制作用主要是通过结合E-cadherin近端启动子区E盒,激活Hedgehog-GLI信号通路,从而增强结肠癌细胞侵袭、迁移和增殖的能力[14]。Chanrion等[15]的NICD/p53-/-小鼠模型研究证实p53缺失可抑制miRNAs表达,从而激活Notch和Wnt信号通路,而这些通路又可负性调控p53和miRNAs表达,形成一个循环通路,上调EMT相关转录因子的表达,最终导致EMT。
4. miRNAs:miRNAs是一类新发现的内源性非编码单链小分子RNA,通过结合靶基因mRNA的3’端非翻译区而负向调控蛋白翻译。研究[16]表明miRNAs可通过介导EMT参与结直肠癌的侵袭转移。目前发现抑制EMT的miRNAs包括miR-200家族、miR-132、miR-28、miR-428等;促进EMT的miRNAs包括miR-21、miR-31、miR-214、miR-29a-3p等。Zheng等[17]证实有转移的结直肠癌组织中miR-132低表达,并诱导结直肠癌细胞发生EMT。有报道[18]发现,miR-30b在结直肠癌中表达下调,可上调Snail表达,并抑制Snail下游基因E-cadherin表达、促进Vimentin表达,进而诱导EMT,增强结直肠癌的侵袭迁移能力。Cai等[19]发现TGF-β诱导结肠癌细胞HT-29发生EMT,miR-22、miR-200b表达下调;miR-22缺失对EMT无影响,敲除miR-200b发现EMT间质标记物N-cadherin、Vimentin和Twist1表达增加,E-cadherin表达减少。Hur等[20]发现miR-200c可抑制EMT的发生,上调E-cadherin表达并下调Vimentin表达,从而抑制结直肠癌细胞转移。有研究[21]发现,miR-139-5p在结肠癌中作为抑癌基因发挥生物学功能。miR-29a-3p和miR-21-5p在结直肠癌和腺瘤中均高表达[22]。Cottonham等[23]发现miR-21与miR-31共同作用,通过抑制TIAM1表达而增强结肠癌细胞迁移和侵袭能力。随着研究的不断深入,miRNAs有望成为区分结直肠癌类型的指标以及结直肠癌治疗的靶点。
三、EMT参与结直肠癌的相关信号通路
EMT的发生由细胞内信号转导通路精确调控,细胞外信号与细胞膜上相关受体结合将信号传至细胞内,激活细胞内核转录因子,调控相关基因表达。
1. TGF-β/Smad:在肿瘤发生、发展过程中,TGF-β发挥了初期肿瘤抑制以及中后期肿瘤促进的双向作用[24]。近年发现TGF-β为EMT的重要诱导因素,通过Smad和非Smad信号通路对EMT进行调节。TGF-β诱导EMT发生的过程为:TGF-β结合肿瘤细胞膜上的TGF-βⅡ型受体(TβRⅡ),通过TβRⅡ激酶使TGF-βⅠ型受体(TβRⅠ)磷酸化,激活下游Smad2/3并使其磷酸化,磷酸化的R-Smad脱离受体与胞内Smad4结合形成三聚体,进入细胞核后直接与目的基因结合,从而调节目的基因的表达[25]。Smad4在TGF-β诱导的EMT中发挥重要作用。有研究[26]显示Smad4作为抑癌基因能上调E-cadherin表达,加强结肠癌SW480细胞的细胞间连接。Smad4缺失或突变导致结肠癌患者预后差并增加结肠癌远处转移的机会。抑制性Smad(如Smad6/7)能减弱TGF-β信号通路,抑制EMT的发展。然而,Halder等[27]发现,Smad7等位基因与结直肠癌的发生有关,并能抑制Smad信号通路从而促进结直肠癌肝转移。最近研究发现,早期结肠癌细胞中,TGF-β/Smad能上调NDRG2表达,诱导细胞凋亡,而Sp1在该信号通路中起关键作用;晚期结肠癌中,Sp1发生突变或甲基化则抑制TGF-β/Smad信号通路对NDRG2的转录激活而诱导结肠癌细胞EMT的发生[24]。
2. Src/FAK:FAK是一种重要的非受体蛋白酪氨酸激酶,其分子氨基端含有与整合素β亚单位、细胞骨架蛋白和信号转导蛋白结合的位点,为cadherin和integrin介导的黏附通路的调节介质。Src/FAK信号通路可引起E-cadherin的胞吞作用,促进EMT的发生。采用shRNA技术敲除结肠癌SW480细胞FAK基因,并将该细胞植入裸鼠体内成瘤,结果显示瘤体明显减小[28]。Canel等[29]的研究发现,FAK抑制剂PF-562,271可抑制肿瘤细胞的扩散和转移。近期一项结肠癌研究[30]中,高表达GRP78可通过激活FAK信号通路引起DLD1细胞伪足的形成而发生EMT。因此,干扰FAK有望成为治疗结肠癌的新靶点。
3. NF-κB:NF-κB信号通路的活化受多种信号分子和多条信号通路的调控,IKK/IκB/NF-κB为激活NF-κB的关键环节。正常细胞中,NF-κB亚基与I-κBα、β或γ结合,以非活性形式存在于胞质中。受到刺激后通过激活IKK,磷酸化IκB,活化NF-κB并转移至细胞核,调节下游基因的表达[31]。细胞间黏附分子1(ICAM-1)是NF-κB信号通路中调节细胞间联系的重要分子,有研究[32]将HK-2细胞与单核细胞共培养,激活NF-κB信号通路,上调ICAM-1表达,从而诱导了EMT。鞘氨醇激酶1(SphK1)可激活ERK和NF-κB通路,上调结肠癌细胞HT-29中MMP-2、MMP-9和uPA的表达和分泌[33],从而促进肿瘤侵袭和转移。缺氧/复氧可诱导结肠癌细胞株EMT的发生,其机制可能与激活NF-κB信号通路有关[34]。还有研究[35]发现TNF-α可活化NF-κB,促进结肠癌细胞EMT的发生,并增强细胞侵袭迁移能力。
四、EMT与结直肠癌的化疗耐药相关
结直肠癌发生侵袭、转移是患者死亡的主要原因。许多结直肠癌患者早期并无明显症状,就诊时因癌细胞通过血行或淋巴转移等因素失去了最佳手术治疗时机,化放疗为主要的治疗途径。目前结直肠癌的化疗药物包括阿霉素、奥沙利铂、吉西他滨等,随着分子靶向药物的问世,如EGFR抑制剂(西妥昔单抗)等为结肠癌治疗带来新的希望,但上述药物均易发生耐药性。EMT参与了结直肠癌化疗药物耐药的发生。研究[36]发现阿霉素耐药的结肠癌细胞中TGF-β信号通路起关键作用,抑制TGF-β能逆转EMT,从而增强结肠癌细胞HCT116对阿霉素的敏感性。有研究[37]发现奥沙利铂耐药的结直肠癌细胞株呈长梭形、极性丧失、细胞分离、伪足形成,免疫荧光检测发现E-cadherin表达下调或缺失、Vimentin表达上调。Hoshino等[38]发现Snail可提高结肠癌细胞对5-Fu耐药性且结肠癌细胞株可见EMT的发生。
五、展望
EMT的发生涉及多种转录因子和信号通路,形成一个复杂的网络结构,在包括结直肠癌在内的肿瘤发生和侵袭转移中发挥重要作用。大量研究发现,EMT与肿瘤侵袭转移和化疗耐药密切相关,因此明确EMT发生机制以及研究治疗方法至关重要。靶向治疗是目前研究的热点,具有疗效确切、不良反应小的优点,但目前尚未研制出完善的EMT靶向药物。因此,需更深入探索肿瘤尤其是结直肠癌EMT的发生机制,为结直肠癌的治疗提供理论依据和突破口。
参考文献
1 Creighton CJ, Chang JC, Rosen JM. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer[J]. J Mammary Gland Biol Neoplasia, 2010, 15 (2): 253-260.
2 De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression[J]. Nat Rev Cancer, 2013, 13 (2): 97-110.
3 Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J]. J Cell Biol, 1982, 95 (1): 333-339.
4 Ahmed S, Nawshad A. Complexity in interpretation of embryonic epithelial-mesenchymal transition in response to transforming growth factor-beta signaling[J]. Cells Tissues Organs, 2007, 185 (1-3): 131-145.
5 Tian X, Liu Z, Niu B, et al. E-cadherin/β-catenin complex and the epithelial barrier[J]. J Biomed Biotechnol, 2011, 2011: 567305.
6 Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? [J]. Nat Rev Cancer, 2007, 7 (6): 415-428.
7 Casas E, Kim J, Bendesky A, et al. Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis[J]. Cancer Res, 2011, 71 (1): 245-254.
8 Ding J, Zhang Z, Liao G, et al. Positive expression of LSD1 and negative expression of E-cadherin correlate with metastasis and poor prognosis of colon cancer[J]. Dig Dis Sci, 2013, 58 (6): 1581-1589.
9 Tiwari N, Gheldof A, Tatari M, et al. EMT as the ultimate survival mechanism of cancer cells[J]. Semin Cancer Biol, 2012, 22 (3): 194-207.
10Brabletz T, Jung A, Reu S, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment[J]. Proc Natl Acad Sci U S A, 2001, 98 (18): 10356-10361.
11Myong NH. Loss of E-cadherin and acquisition of vimentin in epithelial-mesenchymal transition are noble indicators of uterine cervix cancer progression[J]. Korean J Pathol, 2012, 46 (4): 341-348.
12McInroy L, Määttä A. Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion[J]. Biochem Biophys Res Commun, 2007, 360 (1): 109-114.
13邵书先, 廖秀军, 张延祥, 等. 多基因联合提高结直肠癌甲基化检测阳性率的研究[J]. 中华胃肠外科杂志, 2012, 15 (6): 629-632.
14Roger L, Jullien L, Gire V, et al. Gain of oncogenic function of p53 mutants regulates E-cadherin expression uncoupled from cell invasion in colon cancer cells[J]. J Cell Sci, 2010, 123 (Pt 8): 1295-1305.
15Chanrion M, Kuperstein I, Barrière C, et al. Concomitant Notch activation and p53 deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut[J]. Nat Commun, 2014, 5: 5005.
16Pizzini S, Bisognin A, Mandruzzato S, et al. Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis[J]. BMC Genomics, 2013, 14: 589.
17Zheng YB, Luo HP, Shi Q, et al. miR-132 inhibits colorectal cancer invasion and metastasis via directly targeting ZEB2[J]. World J Gastroenterol, 2014, 20 (21): 6515-6522.
18吴萍, 冶亚平, 丁彦青, 等. miR-30b对结直肠癌细胞转移潜能的影响[J]. 中国肿瘤临床, 2014, 41 (11): 679-683.
19Cai ZG, Zhang SM, Zhang H, et al. Aberrant expression of microRNAs involved in epithelial-mesenchymal transition of HT-29 cell line[J]. Cell Biol Int, 2013, 37 (7): 669-674.
20Hur K, Toiyama Y, Takahashi M, et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis[J]. Gut, 2013, 62 (9): 1315-1326.
21Zhang L, Dong Y, Zhu N, et al. microRNA-139-5p exerts tumor suppressor function by targeting NOTCH1 in colorectal cancer[J]. Mol Cancer, 2014, 13: 124.
22Dong Y, Yu J, Ng SS. MicroRNA dysregulation as a prognostic biomarker in colorectal cancer[J]. Cancer Manag Res, 2014, 6: 405-422.
23Cottonham CL, Kaneko S, Xu L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells[J]. J Biol Chem, 2010, 285 (46): 35293-35302.
24Shen L, Qu X, Ma Y, et al. Tumor suppressor NDRG2 tips the balance of oncogenic TGF-β via EMT inhibition in colorectal cancer[J]. Oncogenesis, 2014, 3: e86.
25Miyazono K. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2009, 85 (8): 314-323.
26Müller N, Reinacher-Schick A, Baldus S, et al. Smad4 induces the tumor suppressor E-cadherin and P-cadherin in colon carcinoma cells[J]. Oncogene, 2002, 21 (39): 6049-6058.
27Halder SK, Rachakonda G, Deane NG, et al. Smad7 induces hepatic metastasis in colorectal cancer[J]. Br J Cancer, 2008, 99 (6): 957-965.
28Lei K, Ye L, Yang Y, et al. RNA interference-mediated silencing of focal adhesion kinase inhibits growth of human colon carcinoma xenograft in nude mice[J]. J Biomed Nanotechnol, 2010, 6 (3): 272-278.
29Canel M, Serrels A, Miller D, et al. Quantitativeinvivoimaging of the effects of inhibiting integrin signaling via Src and FAK on cancer cell movement: effects on E-cadherin dynamics[J]. Cancer Res, 2010, 70 (22): 9413-9422.
30Zhang L, Li Z, Fan Y, et al. Overexpressed GRP78 affects EMT and cell-matrix adhesion via autocrine TGF-β/Smad2/3 signaling[J]. Int J Biochem Cell Biol, 2015, 64: 202-211.
31Kiefel H, Bondong S, Pfeifer M, et al. EMT-associated up-regulation of L1CAM provides insights into L1CAM-mediated integrin signalling and NF-κB activation[J]. Carcinogenesis, 2012, 33 (10): 1919-1929.
32Li Q, Liu BC, Lv LL, et al. Monocytes induce proximal tubular epithelial-mesenchymal transition through NF-kappa B dependent upregulation of ICAM-1[J]. J Cell Biochem, 2011, 112 (6): 1585-1592.
33刘诗权, 覃蒙斌, 钟月圆, 等. 鞘氨醇激酶-1调控ERK和NF-κB通路促进HT-29细胞的增殖和侵袭[J]. 中国现代医学杂志, 2011, 21 (16): 1849-1853,1857.
34Okajima M, Kokura S, Ishikawa T, et al. Anoxia/reoxygenation induces epithelial-mesenchymal transition in human colon cancer cell lines[J]. Oncol Rep, 2013, 29 (6): 2311-2317.
35刘宝玉, 黄杰安, 刘诗权, 等. NF-κB对人结肠癌细胞上皮间质转化及侵袭转移的影响[J]. 世界华人消化杂志, 2014, 22 (23): 3403-3409.
36Li J, Liu H, Yu J, et al. Chemoresistance to doxorubicin induces epithelial-mesenchymal transition via upregulation of transforming growth factor β signaling in HCT116 colon cancer cells[J]. Mol Med Rep, 2015, 12 (1): 192-198.
37Yang AD, Fan F, Camp ER, et al. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines[J]. Clin Cancer Res, 2006, 12 (14 Pt 1): 4147-4153.
38Hoshino H, Miyoshi N, Nagai K, et al. Epithelial-mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer[J]. Biochem Biophys Res Commun, 2009, 390 (3): 1061-1065.
(2015-07-01收稿;2015-08-14修回)
Advances in Research on Epithelial-mesenchymal Transition in Colorectal Cancer
ZHUGEChunfeng,LIUShiquan.
DepartmentofDigestiveDiseases,theFirstAffiliatedHospitalofGuangxiMedicalUniversity,Nanning(530021)
Correspondence to: LIU Shiquan, Email: poempower@163.com
AbstractColorectal cancer is a common malignant tumor, and invasion and metastasis are the major causes of death. Epithelial-mesenchymal transition (EMT) occurs along with transition from epithelial phenotype to mesenchymal phenotype. EMT is involved in the genesis, development, invasion and metastasis of various tumors including colorectal cancer. EMT is closely associated with chemotherapy resistance of tumors. Various signaling pathways are involved in the pathogenesis of EMT and its mechanism is not fully clear. This article reviewed the molecular mechanism and role of EMT in colorectal cancer.
Key wordsEpithelial-Mesenchymal Transition;Colorectal Neoplasms;Molecular Mechanism;Signal Pathway;
DOI:10.3969/j.issn.1008-7125.2016.05.013
*本文通信作者, Email: poempower@163.com
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!