当前位置:首页 期刊杂志

MicroRNA-129通过靶向调控HMGA2抑制胃癌细胞增殖、侵袭

时间:2024-07-28

李金辉 陈 翔 颜秀娟 李 海 陈胜良

上海交通大学医学院附属仁济医院南院消化内科(201112)



·论 著·

MicroRNA-129通过靶向调控HMGA2抑制胃癌细胞增殖、侵袭

李金辉 陈 翔 颜秀娟 李 海 陈胜良*

上海交通大学医学院附属仁济医院南院消化内科(201112)

背景:越来越多的研究表明microRNA在胃癌发生、发展中起重要作用。有研究表明miR-129在胃癌组织中表达异常,但其对胃癌细胞增殖、侵袭的作用仍不明确。目的:探讨miR-129在胃癌组织和胃癌细胞株中的表达及其影响胃癌细胞增殖和侵袭的机制。方法:收集82例胃癌组织及其相应癌旁组织,培养人胃黏膜上皮细胞株和不同的胃癌细胞株,以qPCR法检测miR-129表达。将miR-129 mimic或miR-NC转染胃癌SGC-7901细胞后,转染HMGA2过表达质粒。以克隆形成实验观察细胞增殖情况,Transwell小室法检测细胞侵袭情况,Pearson相关分析评估miR-129表达与HMGA2表达的相关性,荧光素酶实验检测荧光素酶活性,qPCR和蛋白质印迹法分别检测miR-129、HMGA2 mRNA和蛋白表达。结果:与癌旁组织相比,胃癌组织中miR-129表达明显下降(P<0.05);与人胃黏膜上皮细胞株GES-1相比,各胃癌细胞株中miR-129表达明显下降(P<0.05)。与miR-NC组相比,miR-129 mimic组SGC-7901细胞增殖、侵袭能力均明显下降(P<0.05)。胃癌组织中HMGA2 mRNA表达明显增加(P<0.05),并与miR-129表达呈负相关(r=-0.543 9,P<0.01)。野生型miR-129 mimic组荧光素酶活性显著低于miR-NC组(P<0.05);转染miR-129 mimic后HMGA2 mRNA和蛋白表达显著降低(P<0.05)。与miR-129+阴性对照组相比,miR-129 mimic+HMGA2组细胞增殖、侵袭能力明显升高(P<0.05)。结论:miR-129在胃癌组织和细胞中低表达,其可通过下调HMGA2抑制SGC-7901细胞的增殖和侵袭。

胃肿瘤; 微RNAs; HMGA2蛋白; 细胞增殖; 细胞侵袭

胃癌是最常见的恶性肿瘤之一,尽管其治疗已取得一定的进展,但5年死亡率仍很高,尤其是进展期胃癌[1]。因此,深入了解胃癌发生、发展过程中的分子调控机制,有望为其治疗提供新策略。MicroRNA(miRNA)是一类长度为21~25个核苷酸的单链RNA,属于非编码蛋白RNA,广泛存在于生物界[2]。研究发现,miRNA在细胞增殖、凋亡、分化等过程中起重要作用[3],从而参与肿瘤的发生、发展。大量研究表明miRNA参与胃癌的进展、侵袭和转移[4]。本课题的前期研究[5]发现miR-143在胃癌组织中表达下调,而上调miR-143能抑制胃癌细胞的增殖、侵袭能力。miR-129在多种肿瘤中异常表达并具有类似抑癌基因的作用[6]。但有关其在胃癌中表达和作用的研究尚不多见。本研究通过检测胃癌组织和胃癌细胞株中miR-129的表达,并进行靶基因预测,旨在探索 miR-129对胃癌细胞增殖、侵袭的影响及其可能的机制,以期为胃癌治疗提供新的靶点。

资料与方法

一、资料来源

收集 2013 年9月—2015年12月上海交通大学医学院附属仁济医院南院82例胃癌组织和对应的癌旁组织,其中男48例,女34例,年龄37~79岁,平均(47.6±9.3)岁。本研究方案由上海交通大学医学院附属仁济医院伦理委员会审核通过,所有患者均签署知情同意书。

二、细胞株、主要试剂

人胃黏膜上皮细胞株GES-1、胃癌细胞株SNU-16、BGC-823购于上海盖宁生物科技有限公司;胃癌细胞株MNK-45和SGC-7901保存于本实验室。RNA提取试剂、Lipofectamine®2000(Invitrogen公司);逆转录试剂盒、SYBR Green荧光染料试剂盒[宝生物工程(大连)有限公司];兔抗人HMGA2、GAPDH抗体(英国Abcam公司);miR-129 mimic、阴性对照miR-NC和HMGA2过表达质粒均由上海吉凯基因化学技术有限公司合成;辣根过氧化物酶标记的山羊抗兔IgG(H+L)(碧云天生物技术研究所);pGL3-Promoter质粒和pRL-TK质粒以及双荧光素酶报告基因检测试剂盒(Promega公司)。

三、研究方法

1. 细胞培养和转染:各细胞均用含10%胎牛血清的DMEM培养液,置于37 ℃、5% CO2的培养箱中培养。当细胞生长至融合度为80%~90%时,胰蛋白酶消化,常规传代培养。选取对数生长期细胞,按试剂盒说明书进行转染。将5×105个/孔SGC-7901细胞接种于6孔板,生长至60%~70%密度时,以100 μmol/L含有miR-129 mimic质粒或miR-NC、HMGA2过表达质粒或其阴性对照(vector)质粒的脂质体转染6 h后换液,在普通培养基中继续培养 24 h,用qPCR检测转染效率,再行后续实验。

2. qPCR法:提取组织或细胞中的总RNA,逆转录成cDNA。分别以U6和GAPDH作为内参,各基因引物序列见表1。PCR反应体系为25 μL,反应条件:94 ℃ 15 min; 94 ℃ 20 s,60 ℃ 30 s,72 ℃ 30 s,共循环35次;72 ℃ 8 min。独立重复实验3次,绘制扩增曲线,目的基因的表达采用2-ΔΔCt法计算。

表1 各基因PCR引物序列

3. 蛋白质印迹法检测HMGA2表达:提取各组细胞总蛋白。BCA法定量蛋白,行电泳后转移至PVDF膜。10%山羊血清封闭1 h,加入兔抗人HMGA2多克隆抗体(工作浓度1∶500)或GAPDH抗体(工作浓度1∶1 000),4 ℃孵育过夜,TBST洗膜,加入辣根过氧化物酶标记的山羊抗兔二抗孵育2 h。ECL法显影,以Quantity One 4.4软件分析条带灰度。

4. 克隆形成实验检测细胞增殖能力:取转染后的SGC-7901细胞,以1 000个/孔的密度接种于6孔板,培养箱中静止培养2周,至肉眼可见细胞克隆时终止培养。弃培养液,PBS洗涤3次,4%多聚甲醛固定,0.1%结晶紫染色;计数细胞克隆数目。

5. Transwell小室法检测细胞侵袭能力:转染48 h 后取各组细胞,以5×104/孔接种于Matrigel-Transwell小室,小室内采用无血清DMEM 300 μL培养基进行培养,下室加入500 μL 10%胎牛血清培养液。培养24 h后用棉签轻轻擦去上层细胞,取出小室。4%多聚甲醛固定,0.1%结晶紫染色,PBS清洗。荧光显微镜下随机选取5个视野(×200),观察侵袭细胞并计数,实验重复3次。

6. 荧光素酶实验:将SGC-7901细胞以每孔5×104/孔接种于24孔板,次日转染miR-129 mimic或miR-NC,第3天共转染0.2 μg pGL3-HMGA2-3’-UTR-WT(野生型)或pGL3-HMGA2-3’-UTR-MUT(突变型)和pRL-TK质粒,继续培养48 h后进行检测,计算相对荧光素酶活性。相对荧光素酶活性=萤火虫荧光素酶活性值/海肾荧光素酶活性值。

四、统计学分析

结 果

一、miR-129在胃癌组织和细胞株中的表达

与癌旁组织相比,胃癌组织中miR-129表达明显下降(P<0.05)(图1A)。与人胃黏膜上皮细胞株GES-1相比,各胃癌细胞株中miR-129表达均明显下降(P<0.05)(图1B)。

二、miR-129表达对SGC-7901细胞增殖和侵袭的影响

qPCR法显示,与空白对照组和miR-NC组相比,miR-129 mimic组SGC-7901细胞中miR-129表达明显增加(P<0.01)(图2A)。克隆形成实验表明,miR-129表达上调后SGC-7901细胞增殖能力较空白对照组和miR-NC组明显下降(P<0.05)(图2B)。Transwell实验发现,miR-129表达上调后,细胞侵袭能力明显下降(P<0.01)(图2C)。

三、miR-129靶基因的预测和验证

与癌旁组织相比,胃癌组织中HMGA2 mRNA表达明显升高(P<0.05)(图3A)。Pearson相关分析表明胃癌组织中miR-129表达与HMGA2 mRNA表达呈负相关(r=-0.543 9,P<0.001)(图3B)。利用miRBase、miTarget和TargetScanS等软件行生物学分析,结果表明HMGA2 mRNA含有可与miR-129结合的3’-UTR(图3C)。构建并转染含有HMGA2 3’-UTR的报告质粒后发现,野生型miR-129 mimic组的荧光素酶活性显著低于miR-NC组(P<0.05),而突变型中两组无明显差异(P>0.05)(图3D)。qPCR和蛋白质印迹法表明,与空白对照组和miR-NC组相比,miR-129 mimic组HMGA2 mRNA和蛋白表达均明显下降(P<0.05)(图3E、3F)。说明HMGA2在胃癌细胞中可能是miR-129的靶基因。

四、HMGA2对miR-129介导的SGC-7901细胞抑制作用的影响

与miR-129 mimic+vector组相比,miR-129 mimic+HMGA2组SGC-7901细胞HMGA2 mRNA和蛋白表达均明显增加(P<0.05)(图4A、4B),细胞增殖和侵袭能力均明显增强(P<0.05)(图4C、4D)。

A:胃癌组织和癌旁组织中miR-129表达;B:不同细胞株中miR-129表达

A:miR-129表达(qPCR法);B:细胞增殖能力(克隆形成实验);C:细胞侵袭能力(Transwell实验)

A:胃癌组织中HMGA2 mRNA表达(qPCR法);B:胃癌组织中miR-129表达与HMGA2表达的相关性分析;C:生物信息学软件预测miR-129与HMGA2基因的结合位点;D:荧光素酶活性;E:HMGA2 mRNA表达(qPCR法);F:HMGA2蛋白表达(蛋白质印迹法)

图3 HMGA2是miR-129的作用靶点

讨 论

肿瘤的局部侵袭和远处转移限制了手术运用,因此降低肿瘤细胞的侵袭、转移能力有重要的临床意义。近年大量研究表明miRNA在肿瘤的发生发展、早期诊断、肿瘤细胞侵袭和转移等方面均发挥重要作用[7]。目前已发现miR-129在多种肿瘤组织或细胞株中的表达明显下降,包括肾癌、结直肠癌、肝癌、乳腺癌等[8-10]。miR-129作为抑癌因子,能抑制细胞增殖,促进细胞凋亡,从而抑制肿瘤的进展[11]。近年多项研究[12-13]发现miR-129启动子区和5’-UTR包含CpG岛,其过度甲基化可引起miR-129表达下降,从而诱导胃癌的发生。且这一甲基化过程可能与胃癌患者化疗耐药有关[14]。顺铂耐药的胃癌组织和细胞中miR-129表达下降,而过表达miR-129可使胃癌细胞重新恢复对顺铂的敏感性[15]。然而,有关miR-129对胃癌细胞增殖、侵袭能力的研究甚少。最近一项研究[16]发现miR-129在胃癌患者组织和外周血中表达均下降,促进了胃癌细胞的增殖、迁移能力,该作用可能通过下游靶基因白细胞介素8(IL-8)而实现的。本研究发现miR-129表达在胃癌组织中下调,在胃癌细胞株中亦明显下降;而过表达miR-129后,SGC-7901细胞的增殖、侵袭能力受到抑制,这与先前的报道相符。然而,miRNA对基因的调节作用是一个复杂的网络系统,单一miRNA分子往往参与了多个目标基因的调控。本研究应用生物学信息预测软件对miR-129的靶基因进行预测,最终定位到HMGA2基因。

A:HMGA2 mRNA表达(qPCR法);B:HMGA2蛋白表达(蛋白质印迹法);C:细胞增殖能力(克隆形成实验);D:细胞侵袭能力(Transwell实验)

HMGA2是一类非组蛋白染色体蛋白,可通过改变染色质结构来调节转录[17]。HMGA2在胚胎发育时大量表达,此后逐渐下降并维持较低水平表达,提示其在胚胎发育的细胞增殖分化过程中发挥重要作用。目前研究发现HMGA2在各种恶性肿瘤如胃癌中过表达并与肿瘤预后息息相关[18]。Jun等[19]亦发现,胃癌中HMGA2表达明显上调并与患者的总生存率呈负相关。这一作用可能与HMGA2能促进胃癌细胞上皮-间质转化(EMT)有关[20]。过表达HMGA2能促进胃癌细胞增殖和侵袭能力[21],而下调HMGA2表达能通过减轻EMT来抑制胃癌细胞的增殖、侵袭能力[22]。本研究发现,HMGA2表达在胃癌组织中明显增加,且与miR-129表达呈负相关。进一步行细胞实验发现,miR-129 mimic干预SGC-7901细胞后HMGA2表达下降,荧光素酶实验结果表明miR-129可与HMGA2 3’-UTR结合,抑制HMGA2表达。回补实验结果显示HMGA2参与了miR-129对胃癌细胞的抑制作用。推测miR-129能通过下调HMGA2表达来抑制胃癌细胞的增殖、侵袭能力。此外,研究[20]发现HMGA2敲除后,EMT标记物发生逆转,认为其促进胃癌侵袭转移的作用可能是通过促进EMT而实现的。最近一项细胞和动物实验[23]发现HMGA2促进EMT的作用主要是通过调节下游靶基因Twist相关蛋白1(TWIST1)完成的。由此可见,HMGA2有望成为胃癌治疗的潜在靶点。

综上所述,胃癌中miR-129表达下调,miR-129可靶向调控HMGA2表达,从而抑制胃癌细胞的增殖、侵袭能力,进一步证实了miR-129在胃癌发生、发展中的重要作用,为胃癌的治疗提供了新思路。

1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66 (1): 7-30.

2 Calin GA, Croce CM. MicroRNA signatures in human cancers[J]. Nat Rev Cancer, 2006, 6 (11): 857-866.

3 Shukla GC, Singh J, Barik S. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions[J]. Mol Cell Pharmacol, 2011, 3 (3): 83-92.

4 Zhang M, Du X. Noncoding RNAs in gastric cancer: Research progress and prospects[J]. World J Gastroenterol, 2016, 22 (29): 6610-6618.

5 Li JH, Chen X, Yan XJ, et al. microRNA-143 acts as a prognostic marker in gastric cancer and its role in cell proliferation and invasion[J]. Int J Clin Exp Pathol, 2016, 9 (10): 9810-9820.

6 Gao Y, Feng B, Han S, et al. MicroRNA-129 in Human Cancers: from Tumorigenesis to Clinical Treatment[J]. Cell Physiol Biochem, 2016, 39 (6): 2186-2202.

7 Profumo V, Doldi V, Gandellini P, et al. Targeting microRNAs to withstand cancer metastasis[J]. Methods Mol Biol, 2015, 1218: 415-437.

8 Bandres E, Agirre X, Bitarte N, et al. Epigenetic regulation of microRNA expression in colorectal cancer[J]. Int J Cancer, 2009, 125 (11): 2737-2743.

9 Chen X, Zhang L, Zhang T, et al. Methylation-mediated repression of microRNA 129-2 enhances oncogenic SOX4 expression in HCC[J]. Liver Int, 2013, 33 (3): 476-486.

10 Yu Y, Zhao Y, Sun XH, et al. Down-regulation of miR-129-5p via the Twist1-Snail feedback loop stimulates the epithelial-mesenchymal transition and is associated with poor prognosis in breast cancer[J]. Oncotarget, 2015, 6 (33): 34423-34436.

11 Zheng L, Qi YX, Liu S, et al. miR-129b suppresses cell proliferation in the human lung cancer cell lines A549 and H1299[J]. Genet Mol Res, 2016, 15 (4).

12 Shen R, Pan S, Qi S, et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer[J]. Biochem Biophys Res Commun, 2010, 394 (4): 1047-1052.

13 Yu X, Song H, Xia T, et al. Growth inhibitory effects of three miR-129 family members on gastric cancer[J]. Gene, 2013, 532 (1): 87-93.

14 Wu Q, Yang Z, Xia L, et al. Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters[J]. Oncotarget, 2014, 5 (22): 11552-11563.

15 Lu C, Shan Z, Li C, et al. MiR-129 regulates cisplatin-resistance in human gastric cancer cells by targeting P-gp[J]. Biomed Pharmacother, 2017, 86: 450-456.

16 Jiang Z, Wang H, Li Y, et al. MiR-129-5p is down-regulated and involved in migration and invasion of gastric cancer cells by targeting interleukin-8[J]. Neoplasma, 2016, 63 (5): 673-680.

17 Reeves R. Molecular biology of HMGA proteins: hubs of nuclear function[J]. Gene, 2001, 277 (1-2): 63-81.

18 Motoyama K, Inoue H, Nakamura Y, et al. Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family[J]. Clin Cancer Res, 2008, 14 (8): 2334-2340.

19 Jun KH, Jung JH, Choi HJ, et al. HMGA1/HMGA2 protein expression and prognostic implications in gastric cancer[J]. Int J Surg, 2015, 24 (Pt A): 39-44.

20 Lee J, Ha S, Jung CK, et al. High-mobility-group A2 overexpression provokes a poor prognosis of gastric cancer through the epithelial-mesenchymal transition[J]. Int J Oncol, 2015, 46 (6): 2431-2438.

21 Zha L, Wang Z, Tang W, et al. Genome-wide analysis of HMGA2 transcription factor binding sites by ChIP on chip in gastric carcinoma cells[J]. Mol Cell Biochem, 2012, 364 (1-2): 243-251.

22 Xia YY, Yin L, Jiang N, et al. Downregulating HMGA2 attenuates epithelial-mesenchymal transition-induced invasion and migration in nasopharyngeal cancer cells[J]. Biochem Biophys Res Commun, 2015, 463 (3): 357-363.

23 Li W, Wang Z, Zha L, et al. HMGA2 regulates epithelial-mesenchymal transition and the acquisition of tumor stem cell properties through TWIST1 in gastric cancer[J]. Oncol Rep, 2017, 37 (1): 185-192.

(2017-04-06收稿;2017-04-18修回)

MicroRNA-129 Inhibits Gastric Cancer Cells Proliferation and Invasion by Targeting HMGA2

LI Jinhui, CHEN Xiang, YAN Xiujuan, LI Hai, CHEN Shengliang.

Division of Gastroenterology and Hepatology, South Campus, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (201112)

CHEN Shengliang, Email: chenslmdrj@sina.com

Stomach Neoplasms; MicroRNAs; HMGA2 Protein; Cell Proliferation; Cell Invasion

10.3969/j.issn.1008-7125.2017.07.002

*本文通信作者,Email: chenslmdrj@sina.com

Background: More and more evidences suggest that microRNA plays an important role in the development of gastric cancer (GC). Expression of miR-129 in GC tissues is found abnormal, however, the mechanism of miR-129 in cell proliferation and invasion is still undefined. Aims: To investigate the expression of miR-129 in GC tissue and GC cell lines and the mechanism of miR-129 in proliferation and invasion of SGC-7901 cells. Methods: Eighty-two GC tissues and corresponding paracancerous tissues were collected, human gastric epithelial cell line and different GC cell lines were cultured, qPCR was conducted to assess miR-129 expression. SGC-7901 cells were transfected with miR-129 mimic or miR-NC, and then were transfected with overexpressed HMGA2 plasmid. Colony formation assay was used to detect cell proliferation ability, and Transwell chamber was used to assess cell invasion ability. Pearson correlation analysis was used to analyze the correlation between miR-129 and HMGA2 mRNA expression. Luciferase assay was performed to determine the activity of luciferase. mRNA and protein expressions of miR-129, HMGA2 were determined by qPCR and Western blotting, respectively. Results: Compared with paracancerous tissues, expression of miR-129 was significantly decreased in GC tissues (P<0.05); when compared with human gastric epithelial cells, expression of miR-129 was significantly decreased in GC cell lines (P<0.05). Compared with miR-NC group, proliferation and invasion abilities of SGC-7901 cells were inhibited in miR-129 mimic group (P<0.05). HMGA2 mRNA expression in GC tissues was significantly upregulated (P<0.05), and was negatively correlated with miR-129 expression (r=-0.543 9,P<0.01). Luciferase activity in wild-type miR-129 mimic group was significantly lower than that in miR-NC group (P<0.05); mRNA and protein expressions of HMGA2 were decreased after transfection with miR-129 mimic (P<0.05). Compared with miR-129+vector group, proliferation and invasion of SGC-7901 cells were significantly increased in miR-129 mimic+HMGA2 group (P<0.05). Conclusions: The expression of miR-129 is decreased in GC tissue and cells; miR-129 inhibits SGC-7901 cells proliferation and invasion by negatively regulating HMGA2.

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!