当前位置:首页 期刊杂志

丁酸盐与炎症性肠病的研究进展

时间:2024-07-28

艾 静 王承党

福建医科大学附属第一医院消化内科 福建医科大学消化疾病研究室(350005)

炎症性肠病(IBD)包括克罗恩病(CD)和溃疡性结肠炎(UC),目前认为肠道菌群紊乱、细菌代谢产物改变、肠道免疫功能异常等因素在IBD的发病机制中发挥重要作用。丁酸盐是肠道细菌的代谢产物,其在IBD中的作用备受关注。本文就丁酸盐与IBD的研究进展作一综述。

一、肠腔内丁酸盐的来源与功能

丁酸盐是含四个碳原子的短链脂肪酸(short chain fatty acid, SCFA),肠腔内的丁酸盐主要来自肠道细菌分解膳食纤维,如低聚果糖、大麦、淀粉、燕麦糠等[1-3]。Cummings等[4]通过尸检发现SCFA在盲肠、升结肠、降结肠、乙状结肠中的含量分别为(131±9) mmol/kg、(123±12) mmol/kg、(80±17) mmol/kg、(100±30) mmol/kg,其中乙酸盐、丙酸盐、丁酸盐的含量比约为57∶22∶21,SCFA含量从右半结肠至左半结肠逐渐降低,可能与右半结肠pH值低于左半结肠有关。鉴于活体测定肠腔中丁酸盐含量较困难,Hallert等[3]利用气相色谱法测定粪便中丁酸盐,以评估其在肠腔内含量,结果显示每克粪便含丁酸盐约11 mmol,乙酸盐、丙酸盐、丁酸盐比例约为47∶11∶12。丁酸盐在结肠内主要通过非离子扩散和载体介导(如单羧酸转运体蛋白1)进入细胞,载体介导转运具有pH值、时间、浓度依赖性[5-6]。丁酸盐在肠腔中的作用主要有:①提供结肠黏膜细胞70%以上的能量;②促进肠腔内钠、钾、水吸收;③抑制结肠癌细胞生长;④增加抗氧化物质谷胱甘肽表达,降低过氧化物酶、环氧合酶(COX)表达,减轻炎症反应;⑤调节肠道神经,降低内脏敏感性[7];⑥抑制组蛋白去乙酰化和核因子(NF)-κB活化,保护肠黏膜屏障[1]。此外,丁酸盐还可改善肥胖、抑制胰岛素抵抗、降低胆固醇合成、预防心脑血管疾病、改善脑缺血性疾病预后、提高记忆力等[8]。

二、丁酸盐与IBD的关系

Paturi等[9]采用气相色谱法分析显示,IBD小鼠肠腔中丁酸盐含量较正常小鼠显著降低,口服蓝莓和西兰花可增加丁酸盐含量,改善肠道炎症。研究[10-11]显示,丁酸盐与美沙拉秦联合应用治疗轻中度UC,可提高美沙拉秦疗效。丁酸盐与5-氨基水杨酸联合治疗对激素、5-氨基水杨酸耐药的远端UC,可诱导UC症状缓解,患者排便次数、临床评分、对治疗效果满意程度均优于单用5-氨基水杨酸。IBD不仅表现为肠腔内丁酸盐含量下降,亦有研究[12]认为,IBD患者氧化丁酸盐的能力下降,丁酸盐的生理作用在体内未充分发挥。

三、丁酸盐改善IBD的机制

1. 丁酸盐与肠道黏膜屏障:肠道黏液层主要由黏蛋白2(MUC2)、三叶因子3(TFF3)、分泌型IgA等物质组成,是保护肠道上皮细胞的重要防线。在三硝基苯磺酸(TNBS)诱导结肠炎模型小鼠体内,给予丁酸盐可上调TFF3的表达,促进肠黏膜修复,减轻炎症程度[13]。在葡聚糖硫酸钠(DSS)诱导BALB/c小鼠结肠炎模型和重症联合免疫缺陷(SCID)结肠炎模型小鼠体内,MUC2表达抑制,而给予酪丁酸梭菌产生丁酸盐可促进MUC2表达[14]。然而,另一项研究[15]显示,对UC缓解期患者进行丁酸盐灌肠治疗,并不能改变肠黏膜中MUC2、TFF3、分泌型IgA的表达水平。相关结论有待进一步研究。

肠上皮细胞间存在穿膜蛋白和胞质外周蛋白维持细胞间紧密连接,穿膜蛋白包括闭合蛋白、封闭蛋白等,胞质外周蛋白包括ZO家族、PDZ蛋白等。Peng等[16]的研究显示,丁酸盐可通过活化结肠癌Caco-2细胞中的腺苷酸活化蛋白激酶,增加闭合蛋白、封闭蛋白1、封闭蛋白4、ZO-1蛋白在细胞膜的合成。Wang等[17]的研究发现,丁酸盐可通过活化转录因子SP1,促进封闭蛋白1表达。Peng等[18]的研究显示,丁酸盐对肠黏膜屏障的作用呈剂量依赖性,低浓度丁酸盐对肠黏膜屏障具有保护作用,而高浓度丁酸盐促进上皮细胞凋亡、抑制细胞增殖,破坏肠黏膜屏障。

2. 丁酸盐与炎性因子:Segain等[19]和Tedelind等[20]对IBD患者的肠黏膜、外周血单核细胞、中性粒细胞研究发现,丁酸盐可通过抑制NF-κB的抑制蛋白Iκβα降解,从而使COX-2、细胞间黏附分子-1(ICAM)-1、肿瘤坏死因子(TNF)-α、白细胞介素(IL)-1β、IL-6等炎性因子表达下降。Weng等[21]的研究发现,丁酸盐抑制促炎因子IL-8分泌与Iκβα无关,而与锌指蛋白A20表达相关。Klampfer等[22]的研究显示,丁酸盐可抑制干扰素(IFN)-γ对转录激活因子STAT1酪氨酸/丝氨酸磷酸化,从而对肠道黏膜炎症起负向调节作用。Malago等[23]的研究发现,低剂量丁酸盐通过抑制组蛋白去乙酰化而抑制Caco-2 细胞分泌IL-8,而高剂量丁酸盐通过抑制热休克蛋白Hsp70促进IL-8分泌。Di Sabatino等[24]对轻中度CD患者的研究显示,给予患者丁酸盐(4 g/d)治疗8周后,内镜和组织学炎症评分、红细胞沉降率、外周血白细胞计数、黏膜IL-1β和NF-κB表达水平均较治疗前显著下降。上述研究证实丁酸盐可抑制炎性因子分泌,缓解IBD相关症状,作用效应可能与其剂量相关。

3. 丁酸盐与IBD相关结直肠癌:结直肠癌变是IBD的并发症,与患者发病年龄、病程长短、炎症程度有关。Peyrin-Biroulet等[25]的研究显示,IBD相关结直肠癌与散发性结直肠癌相比,发病年龄提早(56.9岁对70.9岁)、5年生存率降低(41.3%对51.9%)。IBD癌变机制可能与遗传信息、炎性因子、氧化应激、肠黏膜屏障破坏等因素有关[26]。Daroqui等[27]的研究显示,丁酸盐可通过改变染色体结构、修饰组蛋白,抑制人结肠癌细胞中原癌基因c-myc、细胞周期蛋白D1转录和表达,促进癌细胞凋亡。COX-2/前列腺素E2(PGE2)通路在肿瘤的发生、发展过程中发挥重要作用,参与肿瘤细胞增殖、凋亡逃逸、血管再生等过程[28-29]。Jahns等[30]的研究发现,丁酸盐可抑制结直肠癌组织COX-2基因表达及其蛋白活性。Wang等[31]的研究显示,将人结肠癌细胞株HT-29培养于含丁酸盐的培养基24 h后,细胞凋亡数量增加,丁酸盐通过激活caspase-9、caspase-3诱导细胞凋亡。此外,Ruemmele等[32]的研究发现,丁酸盐可上调促凋亡基因BAK表达,激活线粒体途径诱导细胞凋亡。Yu等[33]对结直肠癌细胞研究发现,丁酸盐可抑制血管内皮生长因子及其受体神经纤毛蛋白-1表达,从而抑制肿瘤细胞增殖和迁移。

四、结语

丁酸盐作为细菌代谢产物,可抑制肠道炎症、预防癌变、改善IBD病情。然而,丁酸盐具有双重效应,高浓度可破坏肠道黏膜、促进炎症反应。因此,未来需对丁酸盐治疗IBD的剂量以及如何确保病变部位丁酸盐浓度等问题进一步探索,以期为临床治疗IBD提供一种新方法。

1 Hamer HM, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function[J]. Aliment Pharmacol Ther, 2008, 27 (2): 104-119.

2 Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics[J]. J Clin Gastroenterol, 2011, 45 Suppl: S120-S127.

3 Hallert C, Björck I, Nyman M, et al. Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study[J]. Inflamm Bowel Dis, 2003, 9 (2): 116-121.

4 Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. Gut, 1987, 28 (10): 1221-1227.

5 Hadjiagapiou C, Schmidt L, Dudeja PK, et al. Mecha-nism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1[J]. Am J Physiol Gastrointest Liver Physiol, 2000, 279 (4): G775-G780.

6 Stein J, Zores M, Schröder O. Short-chain fatty acid (SCFA) uptake into Caco-2 cells by a pH-dependent and carrier mediated transport mechanism[J]. Eur J Nutr, 2000, 39 (3): 121-125.

7 Leonel AJ, Alvarez-Leite JI. Butyrate: implications for intestinal function[J]. Curr Opin Clin Nutr Metab Care, 2012, 15 (5): 474-479.

8 Berni Canani R, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice[J]. Clin Epigenetics, 2012, 4 (1): 4.

9 Paturi G, Mandimika T, Butts CA, et al. Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a(-/-) mice, a model of inflammatory bowel diseases[J]. Nutrition, 2012, 28 (3): 324-330.

10 Vernia P, Monteleone G, Grandinetti G, et al. Combined oral sodium butyrate and mesalazine treatment compared to oral mesalazine alone in ulcerative colitis: randomized, double-blind, placebo-controlled pilot study[J]. Dig Dis Sci, 2000, 45 (5): 976-981.

11 Vernia P, Annese V, Bresci G, et al. Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: results of a multicentre trial[J]. Eur J Clin Invest, 2003, 33 (3): 244-248.

12 Adenis A, Colombel JF, Lecouffe P, et al. Increased pulmonary and intestinal permeability in Crohn’s disease[J]. Gut, 1992, 33 (5): 678-682.

13 Song M, Xia B, Li J. Effects of topical treatment of sodium butyrate and 5-aminosalicylic acid on expression of trefoil factor 3, interleukin 1beta, and nuclear factor kappaB in trinitrobenzene sulphonic acid induced colitis in rats[J]. Postgrad Med J, 2006, 82 (964): 130-135.

14 Hudcovic T, Kolinska J, Klepetar J, et al. Protective effect ofClostridiumtyrobutyricumin acute dextran sodium sulphate-induced colitis: differential regulation of tumour necrosis factor-α and interleukin-18 in BALB/c and severe combined immunodeficiency mice[J]. Clin Exp Immunol, 2012, 167 (2): 356-365.

15 Hamer HM, Jonkers DM, Renes IB, et al. Butyrate enemas do not affect human colonic MUC2 and TFF3 expression[J]. Eur J Gastroenterol Hepatol, 2010, 22 (9): 1134-1140.

16 Peng L, Li ZR, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers[J]. J Nutr, 2009, 139 (9): 1619-1625.

17 Wang HB, Wang PY, Wang X, et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Dig Dis Sci, 2012, 57 (12): 3126-3135.

18 Peng L, He Z, Chen W, et al. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier[J]. Pediatr Res, 2007, 61 (1): 37-41.

19 Segain JP, Raingeard de la Blétière D, Bourreille A, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease[J]. Gut, 2000, 47 (3): 397-403.

20 Tedelind S, Westberg F, Kjerrulf M, et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease[J]. World J Gastroenterol, 2007, 13 (20): 2826-2832.

21 Weng M, Walker WA, Sanderson IR. Butyrate regulates the expression of pathogen-triggered IL-8 in intestinal epithelia[J]. Pediatr Res, 2007, 62 (5): 542-546.

22 Klampfer L, Huang J, Sasazuki T, et al. Inhibition of interferon gamma signaling by the short chain fatty acid butyrate[J]. Mol Cancer Res, 2003, 1 (11): 855-862.

23 Malago JJ, Koninkx JF, Tooten PC, et al. Anti-inflammatory properties of heat shock protein 70 and butyrate onSalmonella-induced interleukin-8 secretion in enterocyte-like Caco-2 cells[J]. Clin Exp Immunol, 2005, 141 (1): 62-71.

24 Di Sabatino A, Morera R, Ciccocioppo R, et al. Oral butyrate for mildly to moderately active Crohn’s disease[J]. Aliment Pharmacol Ther, 2005, 22 (9): 789-794.

25 Peyrin-Biroulet L, Lepage C, Jooste V, et al. Colorectal cancer in inflammatory bowel diseases: a population-based study (1976-2008) [J]. Inflamm Bowel Dis, 2012, 18 (12): 2247-2251.

26 Azer SA. Overview of molecular pathways in inflammatory bowel disease associated with colorectal cancer development[J]. Eur J Gastroenterol Hepatol, 2013, 25 (3): 271-281.

27 Daroqui MC, Augenlicht LH. Transcriptional attenuation in colon carcinoma cells in response to butyrate[J]. Cancer Prev Res (Phila), 2010, 3 (10): 1292-1302.

28 Kraus S, Arber N. Inflammation and colorectal cancer[J]. Curr Opin Pharmacol, 2009, 9 (4): 405-410.

29 Greenhough A, Smartt HJ, Moore AE, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment[J]. Carcinogenesis, 2009, 30 (3): 377-386.

30 Jahns F, Wilhelm A, Jablonowski N, et al. Butyrate suppresses mRNA increase of osteopontin and cyclo-oxygenase-2 in human colon tumor tissue[J]. Carcinogenesis, 2011, 32 (6): 913-920.

31 Wang L, Luo HS, Xia H. Sodium butyrate induces human colon carcinoma HT-29 cell apoptosis through a mitochondrial pathway[J]. J Int Med Res, 2009, 37 (3): 803-811.

32 Ruemmele FM, Dionne S, Qureshi I, et al. Butyrate mediates Caco-2 cell apoptosis via up-regulation of pro-apoptotic BAK and inducing caspase-3 mediated cleavage of poly-(ADP-ribose) polymerase (PARP) [J]. Cell Death Differ, 1999, 6 (8): 729-735.

33 Yu DC, Waby JS, Chirakkal H, et al. Butyrate suppresses expression of neuropilin Ⅰ in colorectal cell lines through inhibition of Sp1 transactivation[J]. Mol Cancer, 2010, 9: 276.

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!