当前位置:首页 期刊杂志

海岛棉GbWRKY40基因的克隆及特征分析

时间:2024-07-29

倪志勇,加得拉·吐留汗,邱迎风,曲延英,陈全家

(新疆农业大学农学院/新疆农业大学农业生物技术重点实验室,乌鲁木齐830052)

海岛棉GbWRKY40基因的克隆及特征分析

倪志勇,加得拉·吐留汗,邱迎风,曲延英,陈全家*

(新疆农业大学农学院/新疆农业大学农业生物技术重点实验室,乌鲁木齐830052)

【目的】WRKY转录因子调控多种生物学进程,包括植物生长发育和应答多种环境胁迫。本研究旨在分析WRKY转录因子在海岛棉纤维发育中的功能。【方法】从海岛棉中克隆了1个WRKY转录因子基因Gb-WRKY40,进行同源性分析、多序列比对,利用荧光定量聚合酶链式反应分析其表达模式,通过构建酵母表达载体并转化酵母菌株AH109研究其转录激活活性。【结果】该基因cDNA全长1713 bp,5'非编码区长261 bp,3'非编码区长510 bp;开放阅读框长942 bp,编码313个氨基酸,预测相对分子质量约为34.138×103,等电点为8.46,包含5个外显子和4个内含子;其编码蛋白含有1个WRKY保守区 (WRKYGQK)和1个锌指基序(C-X5-C-X23-H-X1-H),属于WRKY家族第Ⅱ类a组,包含3个核定位信号区,与陆地棉GhWRKY40同源性最高。GbWRKY40在根和开花后25 d纤维中表达量高,而且不具有转录激活活性。【结论】GbWRKY40可能参与调控棉纤维次生壁发育。

海岛棉;GbWRKY40;表达模式;基因克隆;转录激活

植物WRKY转录因子形成1个大的转录因子家族,在植物应答逆境胁迫、表皮毛发育和次生代谢中具有重要的功能[1]。WRKY蛋白包含1个或2个DNA结合结构域,每个结构域由60个氨基酸组成,其N端存在1个高度保守的WRKYGQK序列,C端具有1个锌指类似基序。根据含有的WRKY结构域数量和锌指类似基序的特点,WRKY转录因子可分为3类:多数蛋白具有1个WRKY结构域,属于第Ⅱ类,具有2个WRKY结构域的蛋白属于第Ⅰ类,通常这2类WRKY蛋白具有相同的锌指类似基序C-X4-5-C-X22-23-H-X1-H;第Ⅲ类WRKY蛋白成员具有1个WRKY结构域,其锌指类似基序为C-X7-C-X23-H-X-C[1]。

随着不同棉种基因组测序的完成[2-7],不同棉种WRKY转录因子的鉴定成为研究热点,雷蒙德氏棉 (Gossypium raimondii)、 亚洲棉 (G.arboreum)和陆地棉(G.hirsutum)中分别发现 116个、109个和 102个 WRKY基因[8-10]。陆地棉WRKY转录因子的研究较多,许多陆地棉WRKY基因参与调控植物对生物和非生物胁迫的应答。一些WRKY转录因子是正调控子,例如在烟草中过表达GhWRKY41基因,能够提高转基因植株对干旱和盐胁迫的忍耐能力[11]。相比野生型植株,过表达GhWRKY34的拟南芥耐盐能力增强[12]。过表达GhWRKY39-1的转基因烟草对病原菌侵染和盐胁迫的忍耐力增强[13]。相反,一些WRKY转录因子起负调控子作用。例如,相比野生型烟草,过表达GhWRKY27a的烟草对干旱和立枯丝核菌的抵抗能力降低[14]。GhWRKY68[15]和GhWRKY17[16]降低转基因烟草对盐和干旱的忍耐能力。相比野生型烟草,过表达GhWRKY15的转基因烟草对病毒和真菌侵染敏感[17]。此外,有些WRKY转录因子在不同的胁迫应答中功能不同:例如在烟草中过表达GhWRKY25会降低植物对干旱胁迫的忍耐能力,但增强了其耐盐能力,转基因植株对葡萄孢菌敏感[18];过表达Gh-WRKY40增强转基因烟草的伤害耐受力和对青枯病的敏感性[19]。陆地棉WRKY转录因子也参与调控植物衰老过程,例如GhWRKY11延缓转基因拟南芥衰老[20]。相比陆地棉,其他棉种WRKY基因报道较少。最近,Fan等利用转录组分析方法从耐盐的棉花野生种旱地棉(G.aridum)中鉴定了109个WRKY基因,过表达GarWRKY17和GarWRKY104基因的转基因拟南芥耐盐性增强[21]。亚洲棉GaWRKY1参与调控倍半萜烯代谢[22]。海岛棉(G.barbadenceL.)GbWRKY1 是磷缺乏应答的正调控子[23]。

关于海岛棉WRKY转录因子研究的报道不多,WRKY转录因子在海岛棉纤维发育中的作用仍不清楚。本研究从海岛棉中克隆到1个棉花WRKY类转录因子基因GbWRKY40,分析了该基因的序列、转录激活活性及表达模式。

1 材料与方法

1.1 植物材料

以海岛棉新海21(Xinhai 21)为供试品种,取盛花期的苞叶、花、根、茎、叶及不同发育阶段的棉纤维,液氮速冻,-80℃保存备用。

1.2 RNA的提取和cDNA第1链的合成

按 RNA plant plus reagent试剂盒(Tiangen)说明书操作步骤,提取苞叶、花、根、茎、叶组织总RNA。按多糖多酚植物总RNA提取试剂盒(Tiangen)说明书操作步骤,提取不同发育阶段的棉纤维总RNA。使用DNaseⅠ(Thermo)除去总RNA中的基因组DNA。利用First Strand cDNA Synthesis试剂盒(Thermo)将各组织总RNA反转录合成cDNA第1链。

1.3 GbWRKY40基因的克隆及序列分析

根据本课题组前期海岛棉胚珠转录组和纤维不同发育表达谱数据,共获得131个WRKY unigene序列,选取1个unigene序列CL2113.Contig3_All设计 1 对引物,GbW40-F:5'-ATGGAATCGACTTGGGTGGATACGA-3'和GbW40-R:5'-TTACCACTTGTGATCTAGAACTTTTCCAGAA-3'。以合成的棉花叶片cDNA第1链为模板,用TransStart Taq DNA酶扩增 (TransGen)获得GbWRKY40的cDNA序列。回收纯化PCR(Polymerase chain reaction) 产物, 连接到pMD19-T载体(TaKaRa),采用菌液PCR方法鉴定获得阳性克隆,送上海美吉公司测序。

利用DNAMAN7进行同源性分析,利用Clustalx1.83软件进行多序列比对,利用MEGA4.1软件构建系统发生树。

1.4 实时定量PCR

实时定量PCR (Real-time quantitative PCR,RT-PCR)使用Maxima SYBR Green/ROX qPCR Master Mix(2×)试剂盒(Fermentas),GbWRKY40引物序列为,GbW40-qF:5'-AGCCTGATTGTGAGAGATGGAT-3'和 GbW40-qR:5'-TTTCTTGACGGGACAACTTGG-3'。GbUBQ7为内参基因,引物序列为,UBQ7-F:5'-GACCTACACCAAGCCCAAGAAG-3'和 UBQ7-R:5'-TGAGCCCACACTTACC ACAATAGT-3'。按照试剂盒说明书推荐体系和反应程序操作。使用ABI 7500 Fast实时荧光定量PCR系统进行实时定量PCR。基因的相对表达量采用方法分析。试验进行3次生物学重复,每组生物学重复做3次技术重复。数据采用SPSS 17.0(SPSS Inc.,USA)最小显著差数法(Least significant difference,LSD)进行差异显著性分析。

1.5 酵母转化

使用带有EcoRⅠ和BamHⅠ酶切位点的引物扩增GbWRKY40的开放阅读框序列,引物序列 为 :w40-F:5'-TTTGAATTCATGGAATCGACTTGGGTGGATACGA-3',w40-R:5'-TTTGGATCCTTACCACTTGTGATCTAGAACTTTTCCAGA-3',下划线表示酶切位点。凝胶回收带有酶切位点GbWRKY40的开放阅读框序列,双酶切后亚克隆至pGBKT7载体中,通过测序验证载体构建的正确性。按照Frozen-EZ Yeast TransformationⅡ试剂盒(ZYMO RESEARCH,Orange,CA)说明书操作步骤,将 GbWRKY40-pGBKT7、pGBKT7、阳性对照GmNAC115-pGBKT7质粒[24]转化酵母菌株AH109,涂布于单缺SD/-Trp营养缺陷型培养基(SD/-Trp)和三缺SD/-Trp/-His/-Ade营养缺陷型培养基 (SD/-Trp/-His/-Ade),30℃培养2~3 d后,观察菌落的生长情况。

2 结果与分析

2.1 GbWRKY40基因全长cDNA克隆及序列分析

根据本课题组海岛棉胚珠转录组和纤维不同发育表达谱数据得到的棉花WRKY相关unigene序列CL2113.Contig3_All,用RT-PCR方法,获得全长cDNA序列,将其命名为GbWRKY40。GbWRKY40全长cDNA为1 713 bp,5'端非编码区261 bp,3'非编码区为510 bp;编码区开放阅读框长942 bp,编码313个氨基酸,预测相对分子质量约为34.138×103,等电点为8.46。氨基酸序列分析表明该蛋白含有1个WRKY保守区,位于第156~212个氨基酸,1个锌指基序C-X5-C-X23-H-X1-H,3个核定位信号区,暗示该转录因子可能定位于细胞核(图1)。系统发生树分析表明GbWRKY40属于WRKY家族第Ⅱ类a组(图 2)。

同源性分析表明,GbWRKY40与 TcWRKY40、CcWRKY40、PtWRKY40 和 PeWRKY 的氨基酸序列一致性分别为72.87%,55.86%,56.48%和55.69%。在棉属中,GbWRKY40与同为四倍体的陆地棉GhWRKY40的氨基酸序列一致性最高(99.04%),与亚洲棉 GaWRKY40和草棉 Gr-WRKY40的氨基酸序列一致性分别为81.96%和95.21%。

海岛棉基因组数据库比对发现,GbWRKY40基因定位于Gbscaffold17271.6.0 scaffold17271:72937~74804(+strand),GbWRKY40 基因全长1868 bp,包含5个外显子和4个内含子。

2.2 GbWRKY40的表达模式分析

利用荧光定量PCR方法分析GbWRKY40在海岛棉不同组织中的表达情况,结果表明在所检测的组织中GbWRKY40在根中表达量最高,在茎中最低,其他组织中的表达量依次为叶、花和苞叶(图3),暗示该基因在这些组织中的表达水平可能与这些组织行使的生物学功能有关。GbWRKY40在开花后5 d的纤维中表达量最低,在开花后25 d的纤维中表达量最高(图4),推测该基因可能在棉纤维次生壁合成过程中发挥作用。

2.3 GbWRKY40转录激活活性分析

用 GbWRKY40-pGBKT7、pGBKT7 和 Gm-NAC115-pGBKT7转化酵母菌株AH109,并将其涂布于单缺SD/-Trp营养型缺陷培养基后观察发现,转化 GbWRKY40-pGBKT7、pGBKT7和 Gm-NAC115-pGBKT7的酵母菌落都能正常生长 (图5),说明上述3个质粒均已转化到酵母中。而在三缺SD/-Trp/-His/-Ade营养型缺陷培养基上,转化GbWRKY40-pGBKT7的酵母菌落和阴性对照pGBKT7的酵母菌落均不能正常生长,而阳性对照GmNAC115-pGBKT7的酵母菌落能正常生长(图5),说明GbWRKY40不具有转录激活活性,推测GbWRKY40可能是1个转录抑制子。

图1 GbWRKY40与其他已知WRKY蛋白的氨基酸序列比对Fig.1 Alignment of the amino acid sequences of GbWRKY40 and other known WRKY homologs proteins

3 讨论

本研究从海岛棉中克隆了1个WRKY类转录因子基因GbWRKY40,氨基酸序列和进化树分析发现GbWRKY40含有1个WRKY保守区和1个锌指基序C-X5-C-X23-H-X1-H,属于WRKY转录因子家族第Ⅱ类a组。不同物种的同一亚族成员间可能具有类似的功能,GbWRKY40与拟南芥AtWRKY18/40/60同属WRKY家族第Ⅱ类a组,之前研究发现AtWRKY18/40/60形成1个高度互作的调控网络,通过转录激活或抑制调控植物防御和非生物胁迫应答基因的表达,在植物逆境胁迫应答中具有重要的功能[25-26]。Gb-WRKY40转录因子是否参与调控植物逆境胁迫响应需要进一步研究。

图2 GbWRKY40蛋白系统发生树分析Fig.2 Phylogenetic analysis of the GbWRKY40 protein

前人研究表明棉花不同的WRKY转录因子可以作为转录激活子或抑制子调控下游基因的表达,对新克隆的WRKY转录因子进行转录激活活性分析有助于了解WRKY转录因子的调控功能。酵母系统是常用的研究转录因子转录激活活性的体内研究方法。例如,通过转化酵母细胞发现 GhWRKY31/33[27]、GhWRKY40[19]、GhWRKY41[11]具有转录激活活性,而GhWRKY12/16/32/34[27]和海岛棉GbWRKY32[28]不具有转录激活效应。本研究通过酵母系统发现GbWRKY40不具有转录激活活性,与GbWRKY40属于同一亚组的拟南芥AtWRKY40是转录抑制子,而AtWRKY18/60是弱转录激活子[26];因此,推测GbWRKY40可能是1个转录抑制子。下一步将通过拟南芥原生质体系统验证GbWRKY40对下游基因的抑制作用。

图3 GbWRKY40基因在不同组织中的表达模式Fig.3 Expression profile ofGbWRKY40 gene in different tissues

图4 GbWRKY40在不同纤维发育阶段的表达模式Fig.4 Expression profile ofGbWRKY40 gene at different fiber developmental stages

图5 GbWRKY40转录因子的转录激活试验Fig.5 Transcriptional activation ability assay of the GbWRKY40 transcription factor

目前,已报道的棉花WRKY转录因子主要参与逆境胁迫应答和衰老进程[14-20,29],参与棉纤维发育的WRKY转录因子报道不多。Wan等研究表明棉纤维的发育可能与拟南芥的表皮毛发育具有类似的分子机制[30],拟南芥TTG2编码1个WRKY转录因子,激活下游表皮毛起始基因TTG1和GL1[31],这些研究表明WRKY转录因子可能在棉纤维发育过程中具有一定的功能。周立研究发现GhWRKY12和GhWRKY16在开花后3~10 d的棉纤维中优势表达,推测这些基因可能在棉纤维发育的起始和伸长期发挥一定作用[27]。本研究发现GbWRKY40在根和开花后25 d的纤维中优势表达,推测该基因可能在棉纤维次生壁发育中具有一定的功能,下一步将通过转化海岛棉来研究基因的生物学功能。

4 结论

从海岛棉中克隆了1个WRKY转录因子基因GbWRKY40,其不具有转录激活活性,在根和开花后25 d的纤维中表达量高。推测该基因可能参与调控棉纤维次生壁发育。

[1]Eulgem T,Rushton P J,Robatzek S,et al.The WRKY superfam ily of plant transcription factors[J].Trends in Plant Science,2000,5(5):199-206.

[2]Wang Kunbo,Wang Zhiwen,Li Fuguang,et al.The draft genome of a diploid cottonGossypium raimondii[J].Nature Genetics,2012,44(10):1098-1103.

[3]Li Fuguang,Fan Guangyi,Wang Kunbo,et al.Genome sequence of the cultivated cottonGossypium arboreum[J].Nature Genetics,2014,46(6):567-572.

[4]Li Fuguang,Fan Guangyi,Lu Cairui,et al.Genome sequence of cultivated upland cotton (Gossypium hirsutumTM-1)provides insights into genome evolution[J].Nature Biotechnology,2015,33(5):524-530.

[5]Zhang Tianzhen,Hu Yan,Jiang Wenkai,et al.Sequencing of allotetraploid cotton(Gossypium hirsutumL.acc.TM-1)provides a resource for fiber improvement[J].Nature Biotechnology,2015,33(5):531-537.

[6]Yuan Daojun,Tang Zhonghui,Wang Maojun,et al.The genome sequence of sea-island cotton(Gossypium barbadense)provides insights into the allopolyploidization and development of superi or spinnable fibres[J/OL].Scientific Reports,2015,5:17662[2016-10-12].https://www.scienceopen.com/document_file/ab63 1975-4060-4707-85cf-cf20fd7f6b1a/PubMedCentral/ab631975-4060-4707-85cf-cf20fd7f6b1a.pdf.DOI:10.1038/srep17662.

[7]Liu Xia,Zhao Bo,Zheng Huajun,et al.Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites[J/OL].Scientific Reports,2015,5:14139[2016-10-12].https://www.scienceopen.com/document_file/81afb1e3-a417-4978-9837-e810d6c78d89/PubMedCentral/81afb1e3-a417-4978-9837-e810d6c78d89.pdf.DOI:10.1038/srep14139.

[8]Ding Mingquan,Chen Jiadong,Jiang Yurong,et al.Genomewide investigation and transcriptome analysis of theWRKYgene family inGossypium[J].Molecular Genetics Genomics,2015,290(1):151-171.

[9]Dou Lingling,Zhang Xiaohong,Pang Chaoyou,et al.Genomewide analysis of theWRKYgene family in cotton[J].Molecular Genetics and Genomics,2014,289(6):1103-1121.

[10]Cai Caiping,Niu Erli,Du Hao,et al.Genome-wide analysis of the WRKY transcription factor gene family inGossypium raimondiiand the expression of orthologs in cultivated tetraploid cotton[J].The Crop Journal,2014,2(2/3):87-101.

[11]Chu Xiaoqian,Wang Chen,Chen Xiaobo,et al.The cotton WRKYgeneGhWRKY41 positively regulates salt and drought stress tolerance in transgenicNicotiana benthamiana[J/OL].PLoS ONE,2015,10(11):e0143022[2016-10-12].http://dx.doi.org/10.1371/journal.pone.0143022.

[12]Zhou Li,Wang Nana,Gong Siying,et al.Overexpression of a cotton(Gossypium hirsutum)WRKYgene,GhWRKY34,in Arabidopsisenhances salt-tolerance of the transgenic plants[J].Plant Physiology and Biochemistry,2015,96:311-320.

[13]Shi Weina,Hao Lili,Li Jing,et al.TheGossypium hirsutum WRKYgeneGhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana[J].Plant Cell Reports,2014,33(3):483-498.

[14]Yan Yan,Jia Haihong,Wang Fang,et al.Overexpression ofGh-WRKY27areduces tolerance to drought stress and resistance to Rhizoctonia solaniinfection in transgenicNicotiana benthamiana[J/OL].Frontiers in Physiology,2015,6:265[2016-10-12].http://dx.doi.org/10.3389/fphys.2015.00265.

[15]Jia Haihong,Wang Chen,Wang Fang,et al.GhWRKY68 reduces resistance to salt and drought in transgenicNicotiana benthamiana[J/OL].PLoS ONE,2015,10(3):e0120646[2016-10-12].http://journals.plos.org/plosone/article/asset?id=10.1371/journal.pone.0120646.PDF.

[16]Yan Huiru,Jia Haihong,Chen Xiaobo,et al.The cotton WRKY transcription factor GhWRKY17 functions in drought and saltstress in transgenicNicotiana benthamianathrough ABA signaling and the modulation of reactive oxygen species production[J].Plant and Cell Physiology,2014,55(12):2060-2076.

[17]Yu Feifei,Huaxia Yifeng,Lu Wenjing,et al.GhWRKY15,a member of the WRKY transcription factor family identified from cotton(Gossypium hirsutumL.),is involved in disease resistance and plant development[J/OL].BMC Plant Biology,2012,12:144[2016-10-12].http://www.biomedcentral.com/1471-2229/12/144.DOI:10.1186/1471-2229-12-144.

[18]Liu Xiufang,Song Yunzhi,Xing Fangyu,et al.GhWRKY25,a groupⅠWRKY gene from cotton,confers differential tolerance to abiotic and biotic stresses in transgenicNicotiana benthamiana[J].Protoplasma,2016,253(5):1265-1281.

[19]Wang Xiuling,Yan Yan,Li Yuzhen,et al.GhWRKY40,a multiple stress-responsive cottonWRKYgene,plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearuminfection in transgenicNicotiana benthamiana[J/OL].PLoS ONE,2014,9(4):e93577[2016-10-12].http://journals.plos.org/plosone/article/asset?id=10.1371/journal.pone.0093577.PDF.

[20]窦玲玲,李光雷,庞朝友,等.棉花转录因子GhWRKY11的克隆及功能分析[J].农业生物技术学报,2016,24(5):625-636.Dou Lingling,Li Guanglei,Pang Chaoyou,et al.Cloning and function analysis ofGhWRKY11 in cotton (Gossypium hirsutum)[J].Journal of Agricultural Biotechnology,2016,24(5):625-636.

[21]Fan Xinqi,Guo Qi,Xu Peng,et al.Transcriptome-wide identifi cation of salt-responsive members of theWRKYgene family in Gossypium aridum[J/OL].PLoS ONE,2015,10(5):e0126148[2016-10-12].http://journals.plos.org/plosone/article/asset?id=10.1371/journal.pone.0126148.PDF.

[22]Xu Yanhua,Wang Jiawei,Wang Shui,et al.Characterization of GaWRKY1,a cotton transcription factor that regulates the sesquiterpene synthase gene(+)-delta-cadinene synthase-A[J].Plant Physiology,2004,135(1):507-515.

[23]Xu Li,Jin Li,Long Lu,et al.Overexpression ofGbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity inArabidopsis[J].Plant Cell Reports,2012,31(12):2177-2188.

[24]倪志勇,于月华,陈全家,等.大豆GmNAC115基因克隆及特征分析[J].大豆科学,2016,35(5):16-20.Ni Zhiyong,Yu Yuehua,Chen Quanjia,et al.Cloning and characterization ofGmNAC115 gene in soybean[J].Soybean Science,2016,35(5):16-20.

[25]Xu Xinping,Chen Chunhong,Fan Baofang,et al.Physical and functional interactions between pathogen-induced Arabidopsis WRKY18,WRKY40,and WRKY60 transcription factors[J].Plant Cell,2006,18(5):1310-1326.

[26]Chen Han,Lai Zhibing,Shi Junwei,et al.Roles ofArabidopsis WRKY18,WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J/OL].BMC Plant Biology,2010,10:281[2016-10-12].http://www.biomedcentral.com/1471-2229/10/281.DOI:10.1186/1471-2229-10-281.

[27]周立.棉花(Gossypium hirsutum)WRKY基因分离与鉴定[D].武汉:华中师范大学,2014.Zhou Li.Isolation and characterization ofWRKYgenes in cotton (Gossypium hirsutum)[D].Wuhan:Central China Normal University,2014.

[28]加得拉·吐留汗,倪志勇,邱迎风,等.海岛棉GbWRKY32基因的克隆及特性分析[J].分子植物育种,2016,14(6):1361-1368.Jadera Toluhan,Ni Zhiyong,Qiu Yingfeng,et al.Cloning and characterization ofGbWRKY32 in sea island cotton(Gossypium barbadenseL.)[J].Molecular Plant Breeding,2016,14(6):1361-1368.

[29]李光雷,范术丽,宋美珍,等.棉花转录因子GhWRKY4基因的克隆及特征分析[J].棉花学报,2013,25(3):205-210.Li Guanglei,Fan Shuli,Song Meizhen,et al.Molecular cloning and characterization analysis ofGhWRKY4,a transcription factor gene in cotton(Gossypium hirsutumL.)[J].Cotton Science,2013,25(3):205-210.

[30]Wan Qun,Zhang Hua,Ye Wenxue,et al.Genome-wide transcriptome profiling revealed cotton fuzz fiber development having a similar molecular model asArabidopsistrichome[J/OL].PLoS ONE,2014,9(5):e97313 (2014-05-13)[2016-10-12].http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0097313.PDF.

[31]Johnson C S,Kolevski B,Smyth D R.TRANSPARENT TESTA GLABRA2,a trichome and seed coat development gene of Arabidopsis,encodesa WRKYtranscription factor[J].Plant Cell,2002,14(6):1359-1375.

Cloning and Characterization of theGbWRKY40 Transcription Factor Gene from Gossypium barbadenseL.

Ni Zhiyong,Jiadela Tuliuhan,Qiu Yingfeng,Qu Yanying,Chen Quanjia*
(College of Agronomy,Xinjiang Agricultural University/Key Laboratory of Agricultural Biological Technology,Xinjiang Agricultural University,Urumqi830052,China)

[Objective]The WRKY transcription factors modulate various biological processes,including plant growth,development,and responses to various environmental stresses.This study aimed to clarify the role of WRKY transcription factors related to cotton fiber development.[Method]TheGbWRKY40 gene,which encodes a WRKY transcription factor,was isolated from cotton(Gossypium barbadenseL.).The obtained sequence was analyzed for homology with genes from other cotton species using the DNAMAN7 program.The sequences of the homologous genes were aligned with Clustalx1.83.Additionally,theGb-WRKY40 expression pattern was analyzed by a quantitative real-time polymerase chain reaction.Furthermore,a yeast expression vector was constructed and inserted into yeast strain AH109 cells to investigate the transcriptional activity ofGbWRKY40.[Result]Full-lengthGbWRKY40 cDNA contains 1713 nucleotides,including a 942 bp open reading frame,a 261 bp 5'-untranslated region,and a 510 bp 3'-untranslated region.The open reading frame was predicted to encode a 313 amino acid protein with a relative molecular mass of 34.138×103and an isoelectric point of 8.46.The genomicGbWRKY40 sequence was observed to comprise five exons and four introns.The predicted GbWRKY40 protein includes a WRKY domain consisting of approximately 60 amino acids,including the conserved WRKYGQK sequence and a zinc-finger motif(C-X5-C-X23-H-X1-H).These characteristics indicated that GbWRKY40 belongs to group IIa of the WRKY family.Moreover,GbWRKY40 contains three putative nuclear localization signals.GbWRKY40 is highly homologous toGhWRKY40.Expression analyses involving a quantitative real-time polymerase chain reaction revealed thatGbWRKY40 is highly expressed in cotton roots and fibers at 25 days post anthesis.Transcriptional activation assay results suggested that the function of the GbWRKY40 transcription factor is unrelated to the activation of transcription.[Conclusion]These results imply thatGbWRKY40 may be involved in regulating secondary cellwall development in cotton fibers.

cotton;GbWRKY40;expression profile;gene clone;transcriptional activation

S562.035

A

1002-7807(2017)04-0393-08

10.11963/1002-7807.nzycqj.20170601

2016-10-13 %第一作者简介:倪志勇(1981―),男,博士,nizhiyong@126.com。*通信作者:chqjia@126.com

新疆维吾尔自治区青年科技创新人才培养工程优秀青年科技人才(qn2015yx012)

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!