时间:2024-08-31
周美波,吴建星,张 巍(武汉科技大学资源与环境工程学院,湖北 武汉430081)
基于小区域信号拾取的微震源定位方法
周美波,吴建星,张 巍
(武汉科技大学资源与环境工程学院,湖北武汉430081)
快速准确地进行微震源定位是微震监测技术研究的重要内容。提出一种基于小区域信号拾取的微震源定位方法,该方法首先对监测单元内采集到的微震源信号进行辨识和去噪处理;然后利用3组微震监测数据建立微震源定位数学模型,可得到从分析点到微震源点的距离和单位矢量;最后通过对建有微震监测系统的金属矿进行爆破模拟微震源试验,从而验证了该方法的可行性。该方法不用读取波形在岩石中的传播时间,能够有效避免微震源定位方法对速度模型的强烈依赖性。
微震源定位;优化算法;小区域信号拾取;微震监测
微震监测技术近年发展迅速,广泛应用于地下矿山、海洋勘探和石油天然气的开采过程中。快速准确地进行微震源定位是微震监测技术的核心内容[1-2],在现有的科学技术条件下可以通过优化微震源定位算法来提高微震源的定位精度[3-5]。
目前针对快速准确的微震源定位,一些学者进行了大量的研究工作[6-8],并提出许多微震源定位方法。如李夕兵[9]提出了一种基于非线性拟合的微震源或声发射源的定位方法;李剑[10]提出了基于相位测量的分布式群波浅层微震定位方法;康亮[11]提出了基于方位角约束的微地震事件定位方法;尹陈[12]提出了基于大斜度井的微震源监测定位方法。但由于矿山内部地质结构复杂,含有大量节理和微不连续面,微震信号在传播过程中的速度很难确定,国内外广泛应用的震源定位方法都无法避免对速度模型的强烈依赖性,直接影响了微震源的定位精度。鉴于此,本文提出了一种基于小区域信号拾取的微震源定位方法。该方法首先对监测单元内采集到的震源信号进行辨识和去噪处理;然后对三组同轴方向3个传感器监测到的半波信号进行建模,通过监测单元的位置坐标和监测到的三组半波信号即可求得微震源的位置坐标,较传统方法具有较好的稳定性;最后通过在某金属矿进行爆破模拟微震源试验,验证了该方法的可行性。
在空间中建立一个长为a、宽为b、高为h(a= b>h)的长方体模型,在其重心P上放置一个三轴传感器,在6个面的各个中心上分别放置6个单轴传感器,组成一个监测单元。用函数S(t)表示微震源点S所发出的震动信号,函数P(t)表示微震信号传到分析点P的波形畸变。假设分析点P的位置矢量为r=(x,y,z),微震源点S的位置矢量为r0= (x0,y0,z0),震动波以平均速度c从微震源点S传到分析点P,P点所记录到的波形为
式中:α表示波的强度服从距离变化的衰减指数,在二维空间中该衰减指数取0.5,在三维空间中该衰减指数取1;R表示分析点P和微震源点S之间的距离,R= |r-r0|;c表示在所测区域内试验确定的平均波速。
式(1)关于变量x、y、z的偏导数分别为
式中:S′t表示S(t)的时间偏导数。函数f(r,t)对时间求导,可得
将式(1)和式(3)代入式(2),可得
式中:n=(nx,ny,nz)表示从分析点P到微震源点S的单位矢量。
由式(4)可以看出,得到分析点P的波形、波形的时间和空间导数就能确定从分析点P到微震源点S的距离R和单位矢量(nx,ny,nz)。
将监测单元中的6个单轴传感器按对称分布原则分成3组,以监测单元中的重心P作为空间直角坐标系的原点,将3组传感器分别放置在x、y、z轴上。设原点处放置的三轴传感器为传感器P,x轴上的两个传感器由左到右分别为传感器Ax和传感器Bx,y轴上的两个传感器由左到右分别为Ay传感器和传感器By,z轴上两个传感器由下到上分别为传感器Az和传感器Bz。传感器P监测到的3组信号分别为fPx、fPy和fPz,传感器Ax、Ay和Az监测到的信号分别为fAx、fAy和fAz,传感器Bx、By和Bz监测到的信号分别为fBx、fBy和fBz,读取信号fBx、fBy和fBz与所对应的信号fAx、fAy和fAz之间的初至时差的一半。
传感器P监测到的3组波形分别为fPx、fPy和fPz,如图1所示。
图1 信号fP x、fP y和fP z的波形Eig.1 Wave form of signal fP x、fP yand fP z
信号fBx、fBy和fBz与所对应的信号fAx、fAy和fAz之间的初至时差的一半分别为δtxAB、δtyAB和δtzAB:
通过三轴传感器P监测到的三组波形fPx、fPy和fPz与同轴方向监测到的两个信号的初至时差δtxAB、δtyAB和δtzAB,可以得到
式中:Δx、Δy和Δz分别为同轴方向两个传感器所在位置坐标之间的差值。
对式(4)积分,有
为了验证该震源定位新方法的可行性,本文以某铁矿在S点的人工爆破为研究对象,根据传感器的空间位置以及监测到的微震动信号,选取传感器Ax、传感器Bx、传感器Ay、传感器By、传感器Az、传感器Bz和传感器P各自监测到的信号,运用该方法进行微震源定位研究。传感器和微震源点的位置见图2。
爆破点S、分析点P、6个单轴传感器的位置坐标及其同轴方向的两个监测点之间的距离Δx、Δy 和Δz以及同轴方向两个传感器监测到的波形的初至时差δtxAB、δtyAB和δtzAB,详见表1。
图2 传感器和微震源点的位置示意图Eig.2 Localization of sensors and seismicsource point
表1 坐标点与距离Table 1 Coordinates and distance
信号fPx、fPy和fPz的波形见图3。
图3 fPx、fPy和fPz的波形Eig.3 Wave form of fPx、fPyand fPz
表2 Sx、Sy和Sz的计算结果Table 2 Calculation data of Sx,Sy&Sz
将表2中的数据代入公式(8)和(9),可计算得到从分析点P到震源点S的距离R和单位矢量(nx,ny,nz),进而通过分析点P的坐标值得到震源点S的位置坐标,同时求出人工爆破点与求得的微震源点之间的误差值,其计算结果见表3。
由表3可以看出:通过该方法得到的微震源点与人工爆破点的误差是8.76 m,能够达到微震监测系统的要求,证明该方法具有可行性。
表3 R和单位矢量(nx,ny,nz)的计算结果Table 3 Results of R and unit vector(nx,ny&nz)
该方法可以避免读取震动信号在岩石中的传播时间,不用选取整段的震动信号,也不用迭代、计算震动波在岩石中的传播速度,只需要同轴方向3个传感器所监测到的三组半波建立微震源位置数学模型,充分利用了微震数据,从而达到准确计算震源的目的。
本文提出的基于小区域信号拾取的微震源定位方法,不用读取震动信号在岩石中的传播时间和测量波速,根据传感器监测到的微震源信号以及微震源信号在岩石中的传播关系,通过读取震动信号的波形及其初至时间建立求解微震源位置的数学模型,成功避免了波形到时读取和预先测量波速给定位带来的误差,具有运算过程简单、震源定位精度高和计算结果稳定性强的优点,可以应用在矿山的微震监测系统中。
[1]陈炳瑞,冯夏庭,李庶林,等.基于粒子群算法的岩体微震源分层定位方法[J].岩石力学与工程学报,2009,28(4):740-749.
[2]董蕊静.水力压裂井间微地震震源定位方法研究[D].陕西:长安大学,2013.
[3]董陇军,李夕兵,唐礼忠,等.无需预先测速的微震震源定位的数学形式及震源参数确定[J].岩石力学与工程学报,2011,30 (10):2057-2067.
[4]陶慧畅,吴建星.微震震源定位计算新方法的探讨[J].工业安全与环保,2013,39(5):85-88.
[5]杨俊峰,张丕状.基于DTOA/DOA和牛顿迭代法的震源定位方法研究[J].地震研究,2013,36(3):324-329.
[6]王健,曾晓献,李振峰,等.基于走时拟合的微震源定位及拾震器布阵研究[J].吉林大学学报(信息科学版),2012,30(2):192-197.
[7]吕世超.微地震有效事件识别及震源自动定位方法研究[D].山东:中国石油大学,2011.
[8]李健,高永涛,谢玉玲,等.基于无需测速的单纯形法微地震定位改进研究[J].岩石力学与工程学报,2014,33(7):1336-1346.
[9]李夕兵.一种基于非线性拟合的微震源或声发射源的定位方法[P].CN201110109372.4,2011.
[10]李剑.基于相位测量的分布式群波浅层微震定位方法[P]. CN201310588819.X,2014.
[11]康亮.基于方位角约束的微地震事件定位方法[P]. CN201210301342.8,2012.
[12]尹陈.基于数据库技术的同型波时差定位方法[P]. CN201110356935.X,2013.
Microseism Source Location Method Based on Signal Collection in Micro-region
ZHOU Meibo,WU Jianxing,ZHANG Wei
(College of Resources and Environment Engineering,Wuhan University of Science and Technology,Wuhan 430081,China)
The rapid and accurate location of microseism source is the most important content in micro seismic monitoring technology.This paper proposes a microseism source location method based on signal collection in micro-region,which does not need the parameter of wave propagation time and can avoid the strong dependency on velocity model.The paper establishes a mathematical model of microseism source location by using three groups of micro-seismic monitoring data,and obtains the unit vector and distance from the analysis point to the micro seismic source point.At the end,the study applies a dynamite in a metal mine to simulating a micro seismic source experiment.The results of the experiment show that the method is feasible.
microseism source location;optimization algorithm;signal collection method in micro-region;micro-seismic monitoring
X936;P315.63
A
10.13578/j.cnki.issn.1671-1556.2015.05.027
1671-1556(2015)05-0154-04
2014-12-01
2015-01-18
周美波(1990—),男,硕士研究生,主要研究方向为微震监测。E-mail:zhoumeibo@126.com
吴建星(1964—),男,教授,主要从事微震监测方面的研究。E-mail:wu-jx@126.com
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!